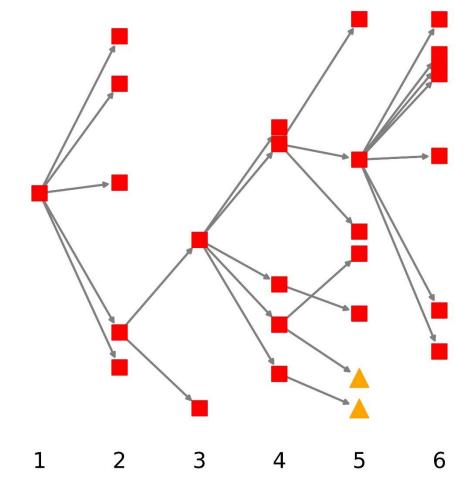
TEMPORAL GRAPH ANALYSIS FOR OUTBREAK PATTERN DETECTION IN COVID-19 CONTACT TRACING NETWORKS

Dario Antweiler¹, Pascal Welke²

¹Fraunhofer IAIS, ²University of Bonn

Fraunhofer Center for Machine Learning within the Fraunhofer Cluster for Cognitive Internet Technologies

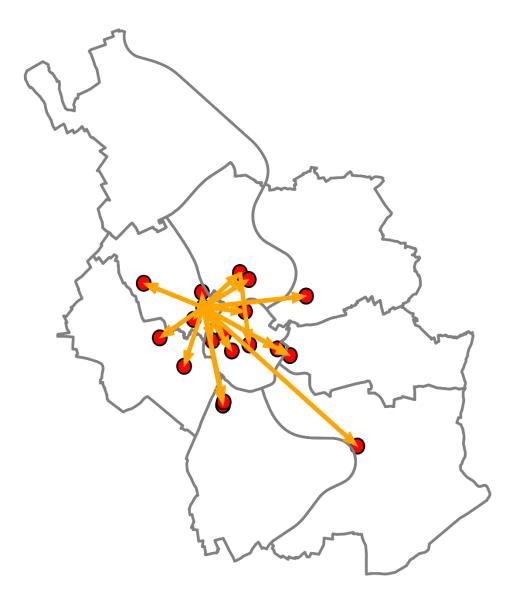

Competence Center Machine Learning Rhine-Ruhr

Why analyze contact tracing data?

Data from German health authority

- **COVID-19** is a highly **dynamic pandemic**
 - Challenge for local health authorities: Improve decisions on social restrictions and quarantines
 - Goal: Break infection chains via contact tracing and selective testing/quarantining
- Contact tracing data can be represented as a temporal graph
 - **Nodes** are persons (either infected or contacts)
 - **Edges** are (assumed) spreading of infection from one person to another
 - Attributes on nodes and edges store additional data

Why analyze contact tracing data?

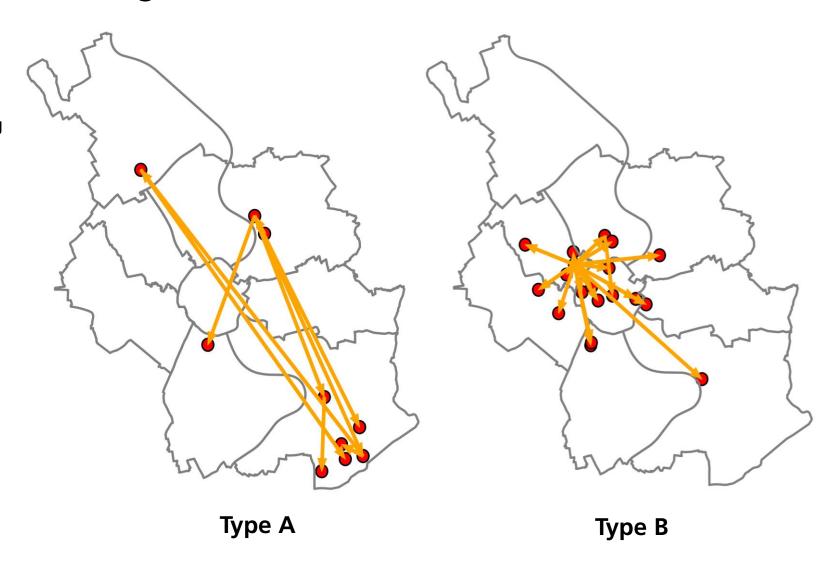

Data from German health authority

Dataset

- 10.200 infections and more than 40.000 contacts between February and October 2020
- Spatial, temporal, demographical and epidemiological information for each case

Research questions identified with subject matter experts:

- Can we identify recurring patterns in the developing network?
- **Can** we predict 'missing links' between infections?
- **)** How can we assess the current risk of uncontrollable spreading?



How can we analyze contact tracing data?

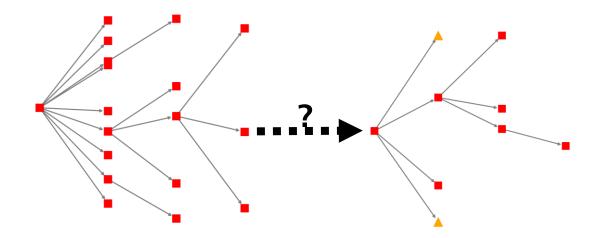
Qualitative results

- Understanding of infection spreading
- **Example**: Differentiate multiple types of spatio-temporal clusters

How can we analyze contact tracing data?

Proposed Model

Interactive temporal graph analysis framework


- User can select interesting components
- > Similar components are detected and visualized automatically

Metrics describing connected components

- **E**.g. Component risk factor $r(C) = \frac{a_{med}}{s_{med}}$
 - a_{med} : median number of infections
 - s_{med} : median serial interval between subsequent infections

Predicting missing links

- Large portion of infection links go unreported
- Approach: Predict missing connections based on spatiotemporal fit
- **Evaluation** against related methods for persistence mining [4], motif mining [5] and frequent subgraph mining [6].

TEMPORAL GRAPH ANALYSIS FOR OUTBREAK PATTERN DETECTION IN COVID-19 CONTACT TRACING NETWORKS

Dario Antweiler¹, Pascal Welke²

¹Fraunhofer IAIS, ²University of Bonn

We would like to thank Gesundheitsamt Köln for the collaboration.

Thank you for listening!

Contact: dario.antweiler@iais.fraunhofer.de

