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A B S T R A C T

Nonwoven fiber materials are omnipresent in diverse applications including insulation, clothing and filtering.
Simulation of material properties from production parameters is an industry goal but a challenging task. We
developed a machine learning based approach to predict the tensile strength of nonwovens from fiber lay-
down settings via a regression model. Here we present an open source framework implementing the following
two-step approach: First, a graph generation algorithm constructs stochastic graphs, that resemble the adhered
fiber structure of the nonwovens, given a parameter space. Secondly, our regression model, learned from
ODE-simulation results, predicts the tensile strength for unseen parameter combinations.
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Description

Predicting material properties from production parameters is desir-
able for many industrial settings including the production of nonwoven
composites. These materials are characterized by a random fiber struc-
ture that is bonded using thermal, chemical or mechanical procedures.

DOI of original article: https://doi.org/10.1016/j.mlwa.2022.100288.
The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
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The application areas are diverse, including hygiene products, insu-
lation materials, and fleece clothing [1]. One of the most important
mechanical properties of nonwovens is their tensile strength, i.e., the
amount of force that is needed to stretch a material sample in one
dimension. The relationship between applied stress and resulting strain
is typically represented by stress–strain curves. Within the industrial
setting such curves can be produced by experimental measurements,
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Fig. 1. Framework consisting of 1⃝ a surrogate model for the simulation of the fiber lay-down, 2⃝ the generation of a fiber graph, 3⃝ a conventional solver for an ordinary
differential equation describing the nonwovens’ mechanical behavior under vertical load (ODE-solver), 4⃝ and the final predicted stress–strain curve of the material. The presented

achine learning approach can reliably approximate the resulting curves via regression based on selected graph features while achieving a 1000× speedup.

but this approach is limited to few examples due to the physical effort
that is required to conduct experimental tensile strength tests and
the costs of stopping a running production for testing. This motivates
simulating the stress–strain behavior through computational means. To
be able to map a set of production parameters to the associated tensile
strength behavior one requires (i) a model of the underlying production
process and (ii) a model of the nonwovens’ mechanical behavior. To
bypass the associated simulation costs we introduce (iii) a machine
learning approach. The individual components and their interactions
are depicted in Fig. 1.

Fiber structure generation

For the production process (i) we consider the nonwoven airlay
production incorporating a thermal bonding procedure, originally mod-
eled in [2]. Therein the authors introduce a stochastic lay-down model,
resulting in random virtual fiber structures that resemble the fiber
structure of actual nonwovens, as well as a virtual bonding procedure,
simulating the thermobonding. The stochastic lay-down model and the
virtual bonding procedure are initiated by various tunable parame-
ters involved in the airlay production process. Here, we consider an
adaption of this approach, described in detail in [3], that additionally
accounts for the nestling of the fibers to the characteristic fiber-ramp
which builds up during production and a material composition of
different (adhesive and non-adhesive) fiber types. The topology of the
resulting virtually bonded fiber structure samples can be described us-
ing graphs, where nodes represent adhesive joints as well as fiber ends
and edges represent fiber connections between them. These graphs,
equipped with a fiber connection length for each edge and a spatial
position for each node, are in the following referred to as fiber graphs
and serve as basis for simulating/predicting the nonwovens’ tensile
strength behavior.

Tensile strength simulations

The employed tensile strength model-simulation framework (ii),
originating from [3], recreates the elastic phase of the nonwovens’
tensile strength behavior under vertical load. The suitability of the
simulation results is discussed in [4]. Particularly, the model describes
the mechanical behavior of the adhered fiber structure by capturing the
interaction of the individual fiber connections, each equipped with a
nonlinear material law, at network level. An additional regularization,
ensuring the well-posedness of the model, allows to formulate this as
large scale ordinary differential equation system (ODE). Hence, the
tensile behavior of some sampled adhered fiber structure under vertical
load can be simulated by straightforward numerical integration of
the associated ODE. In the course of this procedure the relation of

resulting stress–strain curves describe the tensile strength behavior.
Since production-like fiber structures contain many thousand fibers,
the simulations are numerically demanding. The computational effort
is multiplied further by a Monte-Carlo simulation framework that is
required to infer the general material behavior. Although this model
chain enables simulations in practice, cf. [5], it does not allow for ad-
vanced applications, such as virtual nonwoven material design, despite
preliminary homogenization and parallelization.

Machine learning regression model

We approach the problem outlined above by introducing (iii) an
interpretable machine learning regression model [4]. Subject of the
predictions are the stress–strain curves associated to individual fiber
graphs. As basis for the predictions serve features that are extracted
from the respective fiber graphs. This comprises a selected set of
standard graph features, such as the number of nodes and edges or
the lengths of (weighted) shortest paths connecting the top to the
bottom of the samples, as well as a set of stretch features. The stretch
features are determined using a novel stretching algorithm [4] that is
based on a reduced model of the nonwovens’ tensile behavior. This
already encodes a lot of information for predictions, especially with
regard to predicting the sample elongation at which fibers straighten
out and increased stress occurs. We emphasize that the resulting group
of stretch features is particularly developed for the present purpose.
The extracted features are used as input to a regression model, that
relates them to the stress–strain curves associated to the individual
fiber graphs. Stress–strain curves are approximated by the following
constant-quadratic parametrization [3]:

𝑇𝒑(𝜖) =

{

0, 𝜖 < 𝛼
𝛽(𝜖 − 𝛼)2, 𝜖 ≥ 𝛼,

where 𝒑 = (𝛼, 𝛽) ∈ R2
+ (1)

with 𝜖 referring to the relative strain applied to the sample and
𝑇𝒑 ∶ R+ → R+ describing the resulting reacting force, where 𝒑 = (𝛼, 𝛽) ∈
R2
+ parametrizes the curve. We opt for a simple linear regression

model to allow interpretability of the results and the inspection of
feature importances. During training, the model identifies optimal
linear regression weights via Ordinary Least Squares (OLS) to relate
the input features (cf. Table 1) to the output labels 𝛼, 𝛽 respectively.
Training data consists of pairs of fiber graphs and associated stress–
strain curves that are generated according to the previously described
model chain. To assess the quality of our predictions, we compare them
to the original stress–strain curves produced by numerical integration
of the ODE model. We obtain a coefficient of determination of 𝑅2 = 0.98
using leave-one-out cross-validation while achieving a 1000× speedup
the sample strain to the reacting tractive forces can be traced. The in calculation time over the actual tensile strength simulations.
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Table 1
Input features used in the proposed regression model.

Set Symbols Description

𝑛 number of nodes
𝑚 number of edges
𝑑max maximum node degree
𝐿fiber sum of fiber lengths ∑

𝑒∈𝐸 𝑙(𝑒)
|

|

𝑉𝑢
|

|

number of upper face nodes
Graph |

|

𝑉𝑙
|

|

number of lower face nodes
𝐿1(𝑃1) length of shortest path 𝑃1 between 𝑉𝑙 and 𝑉𝑢
𝐿2(𝑃2) fiber lengths sum on weighted shortest path 𝑃2
𝐿3(𝑃2) Euclidean length on weighted shortest path 𝑃2
𝐷1 , 𝐷2 , 𝐷3 {mean,median, sum} of differences between

Euclidean distance and fiber length
|

|

𝐶min
|

|

size of minimum edge cut separating 𝑉𝑙 and 𝑉𝑢

Stretch 𝑆𝑐
1 , 𝑆

𝑐
2 , 𝑆

𝑐
3 , 𝑆

𝑐
4 , 𝑆

𝑐
5 {mean, std, median, max, sum} of stretching

distance for 𝑐 ∈ {1, 1.05, 1.1… , 1.5}

Usage & impact

The code (provided on CodeOcean) is structured in a modular way
according to the individual models listed above. The random fiber
structure generator and the tensile strength simulation are written in
Matlab. With regard to the regression model, these are used to generate
the required training data. Note that we provide a dataset of appropri-
ate size, as its generation is very time-consuming.1 The implementation
of the feature extraction as well as that of the regression model and its
validation are written in Python.

The default for code execution is the shell script run_ computa-
ion.sh which generates exemplary data that is used to train and
alidate the machine learning regression model. Expected arguments
re either ‘‘all’’, ‘‘single’’ or ‘‘none’’. If run_computation.sh all is

executed, a completely new dataset is generated and used for training
and validation. Initial production parameters are sampled from ranges
defined in [4], which may be adjusted in the Matlab routine run-
DataBaseGeneration.m. It takes the arguments ‘‘NFullyLabeled’’,
‘‘NSingleLabeled’’ as well as ‘‘NSamples’’. Following [4] this allows to
generate (‘‘NFullyLabeled’’) fully labeled data sets and (‘‘NSingleLa-
beled’’) single labeled data sets. For both data sets (‘‘NSamples’’) fiber
graphs are generated where either all of them (fully labeled) or just
one of them (single labeled) are equipped with an associated stress–
strain curve. We note that labeling takes a considerable amount of
computing time for which a paralellization is included. On execution
of run_computation.sh single, a single data pair (consisting of
a fiber graph and an associated stress–strain curve) is generated and
added to the provided data set for training and validation. This is
done using the Matlab routine runSampleAndSimulate.m, which
ccepts the arguments ‘‘NLabeledSamples’’ and ‘‘NUnlabeledSamples’’
hat specify the number of fiber graphs sampled with and without
ssociated stress–strain curve, respectively. Note that this option is pro-
ided to illustrate the generation of an additional data pair. The default
or execution, however, is run_computation.sh none which uses

small precomputed dataset without generating any additional data
airs.

In all cases, the resulting dataset is processed using the python
cript feature_generation.py, which computes graph features
hat serve as explanatory variables for regression, and ansatzfit-
ing.py, which labels the stress–strain curves for prediction. The

abels of the stress–strain curves serve as dependent variables. In a
ast step, invoked by running train_validate.py, the obtained

variables (explanatory/dependent) are used for training and validation
of the regression model, the latter of which is performed using a
Leave-One-Out Cross Validation across the sample production parame-
ter combinations, cf., [4]. The resulting regression model is stored and

1 Full dataset is available via https://github.com/pwelke/random-
onwoven-fibers/blob/main/code/download_data.py

can be used within the script predict.py to label newly generated
fiber graphs.

The proposed simulation framework can be used for computer-aided
process design and material optimization. Furthermore, it represents a
proof of concept for the application of machine learning approaches
to the prediction of nonwoven material properties. Since virtual mate-
rial design has so far been limited by the high computational costs,
this new machine learning model allows further research into more
detailed process and product optimizations that have previously not
been computationally feasible.

Limitations & future work

The underlying model-simulation framework and thus the trained
regression model recreate the elastic phase of the nonwovens tensile
strength behavior. Possible extensions include the introduction of plas-
tic effects such as fiber tearing as well as prediction modules for effects
including twisting and bending of fibers. Additionally, we aim to extend
our framework towards other nonwoven material properties including
insulation, flow resistance or acoustic properties as well as different
production processes.
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