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Abstract

We propose a linear time graph transformation that enables the Weisfeiler-Leman
(WL) test and message passing graph neural networks (MPNNs) to be maximally
expressive on outerplanar graphs. Our approach is motivated by the fact that
most pharmaceutical molecules correspond to outerplanar graphs. Existing re-
search predominantly enhances the expressivity of graph neural networks without
specific graph families in mind. This often leads to methods that are impracti-
cal due to their computational complexity. In contrast, the restriction to outer-
planar graphs enables us to encode the Hamiltonian cycle of each biconnected
component in linear time. As the main contribution of the paper we prove that
our method achieves maximum expressivity on outerplanar graphs. Experiments
confirm that our graph transformation improves the predictive performance of
MPNNs on molecular benchmark datasets at negligible computational overhead.

1 Introduction

We study graph neural networks (GNNs) for the family of outerplanar graphs and devise a model that
can distinguish all non-isomorphic outerplanar graphs after applying a linear time pre-processing
step. Morris et al. (2019) and Xu et al. (2019) showed that message passing graph neural networks
(MPNNs) have limited expressivity, i.e., there exist non-isomorphic graphs on which every MPNN
will produce the same embedding. Such graphs exist even within the restricted class of outerplanar
graphs (see Figure 5). This led to the development of GNNs that are more expressive than MPNNs
which are often called higher-order GNNs. However, the increase in expressivity often comes with
a significant increase in computational complexity which makes these methods impractical for large
graphs. For example, k-GNNs (Morris et al., 2019) have a time complexity of Ω(|V |3), while other
higher-order GNNs count pattern graphs such as cliques (Bodnar et al., 2021b), cycles (Bodnar
et al., 2021a,b), and general subgraphs (Bouritsas et al., 2022), which can take exponential time in
the pattern size. However, for certain domains of interest the graph structure can be exploited to build
efficient higher-order GNNs. In this work, we focus on the pharmaceutical domain and on graphs
that represent molecules. Over 92% to 97% of the graphs in widely used benchmark datasets in this
domain are outerplanar (see Table 1). The properties of outerplanar graphs have been exploited by
algorithms for graph mining (Horváth et al., 2010) and molecular similarity computation (Schietgat
et al., 2013; Droschinsky et al., 2017). However, no efficient GNNs with expressivity guarantees on
outerplanar graphs have been proposed. We focus on this class of graphs and devise a linear time
transformation that allows an MPNN to become maximally expressive on outerplanar graphs.

∗Equal contribution

NeurIPS 2023 New Frontiers in Graph Learning Workshop (NeurIPS GLFrontiers 2023).



a

b

cd

e

f

g

h i

j

19

139

1919

179

19

139

19 19

179

a

b

cd

e

f

g

h i

j

19

179

1919

139

19

179

19 19

139

a

b

cd

e

f

g

h i

j

19

189

1919

129

19

189

19 19

129

a

b

cd

e

f

g

h i

j

19

129

1919

189

19

129

19 19

189

Figure 1: Two graphs and their directed Hamiltonian cycles. Nodes are annotated with their HALs,
the distances on the Hamiltonian cycle to their neighbors (Colbourn & Booth, 1981).

We propose to decompose the outerplanar graphs into biconnected outerplanar components and
trees. Using the fact that each biconnected outerplanar component has a unique Hamiltonian cycle
that can be computed in linear time, we split each component into the two directions of the Hamil-
tonian cycle and prove that MPNNs are maximally expressive on biconnected outerplanar graphs
transformed in this way. Taking advantage of the well-known fact that MPNNs are maximally
expressive on labeled trees (Arvind et al., 2015; Kiefer, 2020), we extend our result into a pre-
processing transformation called Cyclic Adjacency Transform (CAT) that works on all outerplanar
graphs. We benchmark CAT with common MPNNs on a variety of molecular graph benchmarks
and show that CAT consistently boosts the performance of MPNNs.

Main contributions. We propose CAT, a linear time pre-processing that renders MPNNs max-
imally expressive on outerplanar graphs. We prove that as a result of our transformation CAT∗,
1-Weisfeiler-Leman is maximally expressive on biconnected outerplanar graphs. We exploit the fact
that outerplanar graphs can be decomposed into biconnected outerplanar components and trees: we
define CAT by applying CAT∗ to each biconnected component and prove its maximal expressivity
on outerplanar graphs.

2 Preliminaries

A graph G = (V,E, µ, ν) consists of a set of nodes V , a set of edges E ⊆ V × V and attributes
for the nodes µ : V → X and edges ν : E → X , respectively, where X is a set of attributes. We
refer to an edge from u to v by uv, and in case of undirected graphs uv = vu. The in-neighbors of
a node u ∈ V are denoted by N−(u) = {v | vu ∈ E}. The out-neighbors of a node u ∈ V are
denoted by N+(u) = {v | uv ∈ E} and in case of undirected graphs, N− = N+. In this paper, the
input graphs are undirected and are transformed into directed ones. A graph G′ = (V ′, E′, µ′, ν′)
is a subgraph of a graph G, denoted by G′ ⊆ G, iff V ′ ⊆ V , E′ ⊆ E, ∀v ∈ V ′ : µ′(v) = µ(v),
and ∀e ∈ E′ : ν′(e) = ν(e). A (directed) cycle (v1, . . . , vk) is a sequence of k ≥ 3 distinct
nodes, with ∀i ∈ {1, . . . , k − 1} : vivi+1 ∈ E and vkv1 ∈ E. A graph is acyclic, if it does not
contain a cycle. Given a graph G, we denote the shortest path distance between two nodes u and
v by dG(u, v), or d(u, v) if it is clear from the context. We denote the diameter of a graph G by
Φ(G) = maxu,v∈V (G) d(u, v).

A graph is outerplanar if it can be drawn in the plane without edge crossings and with all nodes
belonging to the exterior face (see Felsner (2012) for more details). We call an undirected graph
with at least three vertices biconnected if the removal of any single node does not disconnect the
graph. A biconnected component is a maximal biconnected subgraph. We refer to the outerplanar
biconnected components of a graph as blocks.

Two graphs G and H are isomorphic, if there exists a bijection ψ : V (G) → V (H), so that
∀u, v ∈ V (G) : µ(v) = µ(ψ(v)) ∧ uv ∈ E(G) ⇔ ψ(u)ψ(v) ∈ E(H) ∧ ∀uv ∈ E(G) : ν(uv) =
ν(ψ(u)ψ(v)). We call ψ an isomorphism between G and H . An in-tree T is a connected, directed,
acyclic graph with a distinct root with no outgoing edges and other nodes have one outgoing edge.

Weisfeiler-Leman. The 1-dimensional Weisfeiler-Leman algorithm (WL) iteratively assigns col-
ors to nodes. The color of a node v ∈ V (G) is updated iteratively according to ci+1(v) =
h (ci(v), {{(ν(uv), ci(u)) | u ∈ N−(v)}}), where h is an injective function and c0 = µ.

The unfolding tree with height i of a node v ∈ V (G) is defined as the in-tree F v
i = (v, {{Fu

i−1 |
u ∈ N−(v)}}), where F v

0 = ({v}, ∅). The unfolding trees F v
i and Fw

i of two nodes v and w are
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Figure 2: Biconnected outerplanar graph G, CAT∗(G) and the unfolding tree of one of its nodes.

Table 1: Common benchmark datasets and
percentage of outerplanar graphs in them.

Dataset #Graphs Outerplanar

ZINC 12000 98 %
PCQM-Contact 529434 98 %
MOLESOL 1128 97 %
MOLTOXCAST 8576 96 %
MOLTOX21 7831 96 %
MOLLIPO 4200 96 %
MOLCLINTOX 1477 94 %
NCI-2000 250251 94 %
peptides-func 15535 93 %
MOLBACE 1513 93 %
MOLSIDER 1427 92 %
MOLBBBP 2039 92 %
MOLHIV 41127 92 %

Table 2: Pre-processing time of CAT on the
training splits of all datasets and relative ad-
ditional training / evaluation time with CAT.

Dataset CAT
Runtime

Tra+Eva
Time
Increase

MOLESOL 2± 1 s 26 %
MOLBBBP 5± 1 s 36 %
MOLSIDER 6± 1 s 21 %
MOLBACE 6± 1 s 42 %
MOLLIPO 14± 1 s 38 %
MOLTOX21 15± 1 s 27 %
MOLTOXCAST 16± 1 s 13 %
ZINC 44± 1 s 27 %
MOLHIV 152± 1 s 31 %

isomorphic iff the colors of the nodes in iteration i are equal. For more details and a full proof
see, e.g., Kriege (2022). The Weisfeiler-Leman algorithm has historically been used as a heuristic
for graph isomorphism. Let WL(G) = {{c∞(v) | v ∈ V (G)}} be the multiset of node colors in
the stable coloring (Arvind et al., 2015). Two graphs G and H are not isomorphic, if WL(G) ̸=
WL(H). However, non-isomorphic graphs G and H with WL(G) = WL(H) exist. WL for
example cannot distinguish the molecular graphs in Figure 5 or a 6-cycle from two triangles.

Hamilton adjacency lists. A Hamiltonian cycle of a graph is a cycle containing each node exactly
once. Biconnected outerplanar graphs have a unique Hamiltonian cycle that can be found in linear
time (Mitchell, 1979). Annotating each node with the sorted distances dC to all its neighbors on
the two directed variants of the Hamiltonian cycle C gives us Hamiltonian adjacency lists (HALs).
Figure 1 shows two graphs annotated with their HALs in both directions of the Hamiltonian cycle.
Following the Hamiltonian cycle in one direction and concatenating the HALs gives a sequence S
(and a reverse sequence R, for the other direction).

We say a sequence S of length n is a cyclic shift of another sequence S′ of length n if there exists an
ℓ ∈ N such that Si = S′j for all i = 1, . . . , n where j = i+ ℓ mod n. The HAL sequence uniquely
identifies biconnected outerplanar graphs (if both directions and cyclic shifts are considered):

Lemma 1 (Colbourn & Booth (1981)). Two biconnected outerplanar graphs G and H with HAL
and reverse sequences SG, SH and RG, RH are isomorphic, iff SG is a cyclic shift of SH or RH .

3 Identifying Outerplanar Graphs Using Weisfeiler-Leman

We develop a graph transformation called cyclic adjacency transform (CAT), that enables WL
to distinguish all outerplanar graphs. We first introduce CAT∗, enabling WL to distinguish any
biconnected outerplanar graphs, and then extend it to all outerplanar graphs.

In CAT∗ (see Section 3.1), nodes are duplicated to represent the Hamiltonian cycle in both direc-
tions. We annotate edges outside of the Hamiltonian cycle with the distance of the endpoints of the
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edge. This allows the Weisfeiler-Leman algorithm to encode the HAL sequence in the unfolding
trees of the nodes and in turn distinguish non-isomorphic biconnected outerplanar graphs.

For extending our transformation to all outerplanar graphs (in Section 3.2), we need to ensure, that
the biconnected components keep their unique encoding and also that the attachment point is en-
coded uniquely for isomorphic biconnected components (biconnected components might be rotated,
leading to non-isomorphic graphs, that have the same components). We do that by introducing ar-
ticulation and block pooling vertices. The whole graph can then be encoded as a tree, on which the
Weisfeiler-Leman algorithm is maximally expressive.

3.1 Identifying Biconnected Outerplanar Graphs Using Weisfeiler-Leman

We first present a graph transformation called CAT∗, that allows the Weisfeiler-Leman algorithm
to distinguish any two biconnected outerplanar graphs. Figure 2 shows an example of CAT∗. Note
that CAT∗(G) consists of two disjoint copies of G, with directed and annotated edges.
Definition 1. The CAT∗ transformation takes a biconnected outerplanar graph G = (V,E, µ, ν)
and yields a modified graph G′ = CAT∗(G) = (V ′, E′, µ′, ν′) by performing the steps below.

1. Let C = (v1, . . . , vn) be a (directed) Hamiltonian cycle of G and
←−
C be its reverse.

2. Add node disjoint copies of C and
←−
C to G′ and set ν′(e) = (1, ν(e)) for all edges in G′.

3. Let D ⊆ E be the edges of G not on the (undirected) Hamiltonian cycle. Add edges in both
directions toG′ for the copies of C and

←−
C for each edge inD: E(G′) = E(G′)∪Ed∪E←−d

with Ed =
⋃
{vi,vj}∈D{(v

′
i, v
′
j), (v

′
j , v
′
i)} and E←−

d
=

⋃
{vi,vj}∈D{(v

′′
i , v
′′
j ), (v

′′
j , v
′′
i )} for

copies v′i of vi in C (resp. v′′i in
←−
C ). Set µ′(v′i) = µ(vi) and µ′(v′′i ) = µ(vi) for the nodes

in G′.

4. ∀(vi, vj) ∈ Ed set ν′(vi, vj) = (dC(vj , vi), ν(vi, vj)) and ∀(v′i, v′j) ∈ E←−d set ν′(v′i, v
′
j) =

(d←−
C
(v′j , v

′
i), ν(vj , vi)).

Using CAT∗ we prove our first main result.
Theorem 1. Two biconnected outerplanar graphs G and H are isomorphic, if and only if
WL(CAT∗(G)) = WL(CAT∗(H)).

Proof. Two graphs are distinguished by WL iff the multisets of node colors of their stable colorings
differ. Trivially, |V (G)| ̸= |V (H)| ⇒ |V (CAT∗(G))| ̸= |V (CAT∗(H))| ⇒ WL(CAT∗(G)) ̸=
WL(CAT∗(H)), so we only focus on graphs with |V (G)| = |V (H)|. Two nodes only get the same
color, if their unfolding trees are isomorphic. The first number in the HAL of each node is always 1,
so it can be ignored, and the last number is always |V (G)| − 1, so this can simply be reconstructed
by |V (CAT∗(G))|. The rest of the HAL sequence and the node labels of G can be reconstructed
from the unfolding tree of any node in CAT∗(G): Trivially, each node has two direct neighbors
in the Hamiltonian cycle. In the unfolding tree these are the parent and the single child with the
1-annotated edge. All other neighbors in the HAL can be reconstructed by looking at the weights of
the edges that do not have weight 1. Figure 3 shows an example. Looking at any two biconnected
outerplanar graphs with n nodes, Weisfeiler-Leman will be able to distinguish them after at most n
iterations, iff they are non-isomorphic: Since the HAL sequence is encoded in the unfolding trees
from all starting points (cyclic shift) and, because of the reverse copy, in both directions (reverse
direction), this identifies isomorphism by Lemma 1.
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Figure 3: One part of the CAT∗ transformation of the graph from Figure 2 and an example unfolding
tree of one of its nodes from which the HAL sequence of the original graph can be reconstructed.

3.2 The CAT Transformation

We define the CAT transformation by applying CAT∗ to the blocks of the graphs and adding nodes
and edges to make outerplanar graphs distinguishable by WL.
Definition 2. The CAT(G) = G′ transformation maps a graph G to a new graph G′ as follows:

1. LetB1, . . . , Bℓ be the blocks ofG and let F be the graph induced by the edges ofG that are
not in any block plus the nodes that are present in more than one block. Let {⊥,□, ▷◁, ⋆,△}
be distinct node labels not in X .

2. Add F to G′ with labels µ′(v) = (⊥, µ(v)) for v ∈ F .

3. For each block Bi in G:

3.1. Let B′i,
←−
B′i be the two connected components in CAT∗(Bi). Add B′i and

←−
B′i to G′.

3.2. Let Ai = V (Bi) ∩ V (F ) be the nodes of Bi in F .

3.3. Let γi : Ai → V (B′i) map nodes of F to their copy in B′i and←−γi to the copy in
←−
B′i.

3.4. For all pairs (v,←−v ) of corresponding nodes in B′i and
←−
B′i add a node pv with

µ′(pv) = ( ⋆, µ(v)) and edges {pv, v}, {pv,←−v } to G′.
3.5. Add a node bi to G′ with µ′(bi) =□. For all v ∈ V (Bi) add an edge {bi, pv}.
3.6. For each a ∈ Ai let µ′(a) = ( ▷◁, µ(a)) and add edge {pγi(a), a} to G′.

4. Add a node g with µ′(g) =△ to G′ and for all nodes bi, add an edge {g, bi} to G′.

5. Let CAT(G) = G′.

An example of the CAT transformation can be seen in Figure 4. Appendix C contains additional
visualizations of the transformation on real-life molecular graphs. We refer to nodes created in step
3.1 as Hamiltonian cycle nodes, those created in step 3.4 as pooling nodes, those created in step 3.5
as block nodes and those created in step 3.6 as articulation nodes. Finally, the node created in step 4
is called the global (block) pooling node.

Theorem 2. Outerplanar graphs G and H are isomorphic, iff WL(CAT(G)) = WL(CAT(H)).

Proof. Following Theorem 1, each block will be uniquely identified by WL. Since the additional
nodes have distinct labels, they will not cause WL to falsely report two blocks as isomorphic when
they are not. The information about the entire HAL sequence of each block is stored in the b nodes
after some iteration. The p nodes connect the block and b nodes to the rest of the graph (through the
a nodes), determining the orientation of the block. Note that the graph returned by CAT without
the CAT∗ blocks and the node g is a tree. Relying on the labels of the p and b nodes, we can
reconstruct the original graph from this tree. As WL can distinguish labeled trees (Arvind et al.,
2015; Kiefer, 2020), it can thus distinguish non-isomorphic outerplanar graphs using CAT. For the
other direction, note that CAT is permutation-invariant: for two isomorphic graphs G and H , the
graphs CAT(G) and CAT(H) are isomorphic and WL will give the same output for both.

Importantly, we can compute CAT(G) in linear time. The computational complexity is dom-
inated by the computation of the blocks (Tarjan, 1972) and their Hamiltonian cycles (Mitchell,
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Figure 4: A graph and its CAT transformation. Original node labels are represented by letters, edge
and node labels from the CAT transform are represented by colors. CAT(G) looks like a cat.

Table 3: Resistance and diameter before and after the CAT transformation. ρ(G) and maxρ(G)

denote the average and maximum pair-wise effective resistance for graph G. Results are reported as
mean and standard deviation across all graphs in the datasets. In all cases, smaller is better.

Dataset Φ(G) Φ(CAT(G)) ρ(G) ρ(CAT(G)) maxρ(G) maxρ(CAT(G))

ZINC 12.5± 2.6 9.9± 1.6 4.0± 0.7 2.6± 0.4 10.0± 2.0 7.7± 1.9
MOLESOL 6.6± 3.3 6.9± 3.8 2.3± 1.0 2.1± 0.9 5.5± 2.3 6.0± 2.8
MOLTOXCAST 8.5± 4.7 8.4± 4.0 3.0± 1.5 2.6± 1.3 7.2± 4.3 7.4± 3.9
MOLTOX21 8.8± 4.6 8.7± 4.0 3.1± 1.5 2.7± 1.3 7.5± 4.2 7.7± 3.9
MOLLIPO 13.8± 4.0 9.9± 2.1 4.3± 1.2 2.6± 0.5 10.7± 3.4 7.9± 2.3
MOLBACE 15.1± 3.2 11.5± 2.8 5.0± 1.3 2.9± 0.7 12.5± 3.4 9.1± 2.6
MOLSIDER 12.6± 11.8 10.4± 7.3 4.1± 3.8 2.9± 2.2 10.4± 11.0 8.9± 6.8
MOLBBBP 10.7± 3.7 9.1± 2.6 3.4± 1.1 2.4± 0.6 8.3± 3.8 7.5± 2.5
MOLHIV 11.9± 5.2 9.9± 3.8 3.9± 1.7 2.7± 1.2 9.3± 4.7 8.2± 3.8

1979), which both require linear time. Note that we only add a linear number of nodes and edges.
From Morris et al. (2019) and Xu et al. (2019) it follows, that MPNNs that are as expressive as 1-
WL can distinguish CAT(G) and CAT(H) for non-isomorphic outerplanar graphs G and H . Thus,
we propose to transform the input graphs using CAT and apply an MPNN on them.

Note that our proof used an important property of the WL algorithm: Adding nodes and edges with
new labels to WL-distinguishable graphs does never lead to WL-indistinguishable graphs. We use
this to add a global pooling node in step 4 of CAT which is connected to all block pooling nodes.
This allows to pass messages between block nodes in fewer iterations in the subsequent MPNN step.
In the next section we analyze the effect of CAT on the connectivity of the transformed graph.

CAT can also be applied to non-outerplanar graphs. In this case, our graph transformation performs
the steps described in Definition 2. However, if a non-outerplanar block Bi is encountered, only one
copy B′i is created in CAT(G) and its vertices are connected to the corresponding pooling nodes.
While this never reduces expressivity, it is also not guaranteed to improve expressivity on non-
outerplanar graphs. Note that it can be determined in linear time whether a block is outerplanar,
while trying to compute the Hamiltonian cycle of the block (Mitchell, 1979). Hence, the CAT
transformation always only requires linear time.

3.3 Influence of CAT on Graph Connectivity

We investigate the effects of CAT on different measures of graph connectivity. GNNs can in fact
be susceptible to poor performance, e.g., in tasks that depend on long-range interactions (Alon &
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Yahav, 2021). We are therefore interested in analyzing whether CAT improves graph connectivity
measures such as the diameter Φ(G) of a graph G. Here, we refer to the shortest path distance d
between two nodes as the distance between them. We use d(a, b) to denote the distance between
two nodes a, b in CAT(G) and dG(a, b) to denote distance between two nodes a, b in G.

Observation 1. Let B be a block of a graph G, it holds that Φ(CAT(B)) ≤ 4.

Proof. Let a, b ∈ V (CAT(B)). By definition all nodes in CAT(B) are either from a Hamiltonian
cycle created by CAT∗, a pooling node or a block node. If both nodes are from a Hamiltonian cycle,
then there is a path a, pa, bB , pb, b, where pa / pb are pooling nodes and bB is the block node. Hence,
d(a, b) ≤ 4. If a or b is a pooling or a block node, then the above path implies that d(a, b) < 4.

Observation 2. Let Bi and Bj be two blocks of a graph G. In CAT(G), the maximum distance
between any node in CAT(Bi) and any node in CAT(Bj) is 6.

Proof. Let a ∈ V (CAT(Bi)) and b ∈ V (CAT(Bj)). If Bi = Bj , Observation 1 implies d(a, b) ≤
4. If Bi ̸= Bj , then there exists a path a, pa, bi, g, bj , pb, b where pa / pb is a pooling node for a / b,
bi / bj is the block node for Bi / Bj , and g is the global block pooling node. Thus, d(a, b) ≤ 6.

Proposition 1. For an outerplanar graph G, Φ(CAT(G)) ≤ Φ(G) + 7.

Proof sketch. To prove the proposition we analyze the distance between any pairs of nodes in
CAT(G) by case analysis on the type of nodes and show that any two nodes in CAT(G) can be
at most at distance Φ(G) + 7. We defer the full proof to Appendix A.

Proposition 1 states that for outerplanar graphs, in the worst case, CAT increases the graph diameter
by at most 7. We claim that in most practical cases the short-cutting inside or between blocks should
lead to CAT consistently reducing the graph diameter (see Observations 1 and 2). In Table 3, we
demonstrate this on molecular benchmark datasets. Another useful graph connectivity measure is
the effective resistance. The notion of effective resistance originates in electrical engineering (Kirch-
hoff, 1847) and has implications on several graph properties. For example, the effective resistance
between two nodes is proportional to the commute time between them (Chandra et al., 1989). Intu-
itively, a large effective resistance between two nodes suggests that information propagation between
the nodes is hindered. Recently, effective resistance has been in fact linked to over-squashing (Black
et al., 2023) in GNNs, which is a negative effect that leads to long-range interactions having little im-
pact on the predictions of a GNN. Effective resistance as introduced by Kirchhoff (1847) is naturally
only defined for undirected graphs. As CAT produces directed graphs, we therefore use an exten-
sion of effective resistance introduced by Young et al. (2015) that is applicable to directed graphs.
We refer to Young et al. (2015) for more details. In Table 3 we demonstrate that CAT reduces the
pair-wise effective resistance on molecular benchmark datasets.

4 Discussion and Related Work

It is well known that the expressivity of MPNNs is bounded by the 1-WL test (Morris et al., 2019;
Xu et al., 2019). This means that any pair of non isomorphic graphs that cannot be distinguished
by 1-WL will get mapped to the same embedding by any MPNN. One such pair of graphs are
decalin and bicyclopentyl molecules (see Fig. 4). As these two graphs are outerplanar it follows
that MPNNs are not sufficiently expressive for outerplanar graphs. Furthermore, in the graph min-
ing community it is well known that many pharmaceutical molecules are outerplanar (Horváth et al.,
2006; Horváth & Ramon, 2010). Outerplanarity has also been discussed in the context of reconstruc-
tion with GNNs (Cotta et al., 2021). This motivates the need for GNNs that are highly expressive
on outerplanar graphs. We achieve this with CAT, a graph transformation (Jogl et al., 2023). Outer-
planar graphs have treewidth at most two (Bodlaender, 1998) and Kiefer (2020) showed that 3-WL
is sufficiently expressive to distinguish all outerplanar graphs. Hence, any GNN which matches the
expressivity of 3-WL, such as 3-IGN (Maron et al., 2019) or 3-GNN (Morris et al., 2019), is capable
of solving our main goal of distinguishing all outerplanar graphs. However, the runtime of the 3-WL
test isO(n3 log n), which can be infeasible for even medium-sized real-world graphs (Immerman &
Lander, 1990; Kiefer, 2020). Similarly, 3-GNN and 3-IGN run in roughlyO(n3) time (Maron et al.,
2019; Morris et al., 2019). Thus, there currently exists no practical GNN architecture which can
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Table 4: Predictive performance of MPNNs with and without CAT on different molecular bench-
mark datasets. Arrows indicate whether smaller (↓) or bigger (↑) results are better. Bold entries are
an MPNN with CAT that outperforms the same MPNN without CAT.

Dataset →
↓ Model

ZINC
MAE ↓

MOLHIV
ROC-AUC ↑

MOLBACE
ROC-AUC ↑

MOLBBBP
ROC-AUC ↑

MOLSIDER
ROC-AUC ↑

GIN 0.168± 0.007 77.9± 1.0 74.6± 3.2 66.0± 2.1 56.6± 1.0
CAT+GIN 0.101± 0.004 76.7± 1.8 79.5± 2.5 67.2± 1.8 58.2± 0.9
GCN 0.184± 0.013 76.7± 1.4 77.9± 1.7 66.1± 2.4 56.7± 1.5
CAT+GCN 0.123± 0.008 77.1± 1.6 79.2± 1.5 68.3± 1.7 57.9± 1.8
GAT 0.375± 0.013 76.6± 2.0 81.7± 2.3 66.2± 1.4 58.4± 1.0
CAT+GAT 0.201± 0.022 75.3± 1.6 79.3± 1.6 66.0± 1.9 58.3± 1.3

Dataset →
↓ Model

MOLESOL
RMSE ↓

MOLTOXCAST
ROC-AUC ↑

MOLLIPO
RMSE ↓

MOLTOX21
ROC-AUC ↑

GIN 1.105± 0.077 65.3± 0.6 0.717± 0.016 75.8± 0.7
CAT+GIN 0.985± 0.055 65.6± 0.5 0.798± 0.031 74.8± 1.0
GCN 1.053± 0.087 64.4± 0.4 0.748± 0.018 76.4± 0.3
CAT+GCN 1.006± 0.036 66.2± 0.8 0.771± 0.023 74.9± 0.8
GAT 1.037± 0.063 63.8± 0.8 0.728± 0.024 76.3± 0.6
CAT+GAT 1.09± 0.048 64.5± 0.8 0.754± 0.021 75.4± 0.7

distinguish all outerplanar graphs. Even when additionally restricting the graph class to biconnected
outerplanar graphs, MPNNs are not sufficiently expressive (see Fig. 1). Furthermore, Zhang et al.
(2023b) has shown that most GNNs cannot even detect simple properties associated with biconnec-
tivity such as articulation vertices. They find that only their distance-based GNN and specific GNNs
based on subgraphs (Bevilacqua et al., 2021; Frasca et al., 2022) and are able to detect some of these
properties. Again, these approaches have an at least quadratic worst case runtime.

Bicyclopentyl

Decalin
Figure 5: Molecules that cor-
respond to outerplanar graphs
not distinguishable by 1-WL.

Interestingly, it often seems to be impossible to directly use out-
erplanarity to speed up the pre-processing of many higher-order
GNNs. For example, finding a subgraph remains NP-hard for outer-
planar graphs (Sysło, 1982). Thus, methods like the graph structural
network (Bouritsas et al., 2022) that rely on counting subgraphs re-
main computationally expensive even on outerplanar graphs. Sub-
graph GNNs model graphs as collection of subgraphs (Frasca et al.,
2022), this usually requires a pre-processing with at least quadratic
runtime, depending on the method used to extract subgraphs. For
example, node-delete (Bevilacqua et al., 2021) creates all subgraphs
which are obtained by deleting a single node which always creates
O(V 2) nodes and k-ego-net (Bevilacqua et al., 2021) extracts the k-
hop neighborhood for each node which for k ≥ 2 can createO(V 2)
nodes in worst case, e.g. for star graphs, which are also outerplanar.

Finally, there exist many GNNs which are provably more expressive
than WL. Many proofs that show that a proposed architecture is more expressive than WL do this
by arguing that the architecture is never less expressive than WL and providing a single example
where it is more expressive, see for example Bodnar et al. (2021b,a), Wijesinghe & Wang (2022),
and Bevilacqua et al. (2021). However, not much is known about the family of graphs which such
architectures can distinguish. Also proving an upper bound on the expressivity of an architecture
is considered difficult and requires significant effort as demonstrated by Zhang et al. (2023a). In
contrast, we identify outerplanar graphs as a large practical graph family that our proposed method
CAT can distinguish.

5 Experimental Evaluation

We investigate whether our proposed method CAT2 can improve the predictive performance of
MPNNs on molecular benchmark datasets. We utilize three commonly used MPNNs: GIN (Xu

2Our code can be found at https://github.com/ocatias/OuterplanarGNNs_GLF.
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et al., 2019), GCN (Kipf & Welling, 2017), and GAT-v2 (Veličković et al., 2018; Brody et al., 2022).
We train on the commonly used ZINC (Gómez-Bombarelli et al., 2018; Sterling & Irwin, 2015) and
MOLHIV (Hu et al., 2020) datasets, which contain graphs representing molecules. We supplement
these with 7 small datasets (see Table 4) from the OGB collection (Hu et al., 2020). In total we train
with 3 MPNNs on 9 datasets with and without CAT. For each configuration, we separately tune
hyperparameters on the validation set and train a model with the best hyperparameters 10 times on
the training set and evaluate it on the test set. For each dataset we report the mean and standard
deviation of the most common evaluation metric on the test set in the epoch with the best validation
performance. For ZINC we use a batch size of 128 and an initial learning rate of 10−3 that gets halved
if the validation metric does not improve for 20 epochs. The training stops after 500 epochs or if
the learning rate dips below 10−5. For all other datasets we train with a fixed learning rate for 100
epochs and a batch size of 128. We use the same hyperparameter grid for all models and provide
more details in Appendix B. Besides measuring the predictive performance, we also measure the
time needed for applying CAT (averaged over 10 runs), and the training and evaluation time for
GIN and GIN+CAT with the same hyperparameters on all datasets (averaged over 5 runs). Finally,
we report the values for the diameters and effective resistances as described in Section 3.3.

Results. Table 2 shows the pre-processing time of CAT. Note that this is the performance of
running CAT on a single CPU core. Thus, it is possible to achieve faster runtimes by simply par-
allelizing different graphs over different cores. This negligible runtime of around 5ms per graph on
MOLHIV allows to apply the transformation even in realistic high-throughput screening applications
(Krasoulis et al., 2022). Training and prediction time on CAT-transformed graphs increases by 29%
on average. Table 4 shows the predictive performance of all models. Note that our baseline mod-
els obtain very strong results, often surpassing the performance of (higher-order) GNNs reported in
the literature and that we train each MPNN and MPNN+CAT with exactly the same sets of hyper-
parameters. Overall, CAT improves the predictive performance of GIN and GCN in the majority
of datasets (6 / 9 and 7 / 9, respectively). For GIN and GCN, performance increases reliably on all
datasets, except MOLLIPO and MOLTOX21. Surprisingly, CAT does not work well with GAT and only
improves its performance in 2 / 9 datasets. Most notably on ZINC, CAT achieves very strong results
boosting the predictive performance of MPNNs between 33% (GCN) and 46% (GAT). This is only
surpassed by higher-order GNNs such as CW Networks (Bodnar et al., 2021a) which obtains a MAE
of 0.079 ± 0.006 at the cost of potentially exponential pre-processing runtime due to enumerating
cycles in the graph. Table 3 shows that CAT reduces both graph diameter and maximum pair-wise
resistance on most datasets, and the average pair-wise resistance on all datasets. This suggests that
CAT is effective at improving graph connectivity in real-life molecular graphs.

6 Conclusion

We proposed CAT, a graph transformation that enables the Weisfeiler-Leman algorithm to be max-
imally expressive on outerplanar graphs. We rely on the fact that biconnected outerplanar graphs
can be uniquely identified by their Hamiltonian adjacency list sequences, which CAT encodes in
unfolding trees. By combining MPNNs with CAT we enable them to distinguish all outerplanar
graphs. We achieved promising empirical results on standard molecular benchmark datasets where
CAT typically improved the performance of GIN and GCN, while for GAT we could not observe
this benefit. Computing CAT takes linear time and our implementation of CAT typically runs in the
order of seconds, even for MOLHIV the total single-thread runtime is only 2.5 minutes. We also stud-
ied the effect of CAT on graph connectivity, motivated by the recent interest in the over-squashing
phenomenon. We prove that in the worst case CAT increases the diameter of outerplanar graphs by
a small additive constant. However, inspecting CAT on real-world data, we find that the diameter
decreases most of the time. Similarly, we observe that the maximum and average pair-wise effective
resistance, which is associated with over-squashing, typically decreases after applying CAT.

We consider to extend our approach to more general graphs families in the future. A promising can-
didate are k-outerplanar graphs, which are known to capture even more molecular graphs (Horváth
et al., 2010). A challenge of going beyond outerplanarity is that non-outerplanar biconnected com-
ponents can have multiple or even no Hamiltonian cycles, making an extension of CAT to such
graphs non-trivial. A possible approach could be to split a graph into trees and components with
unique Hamiltonian cycles. Such a transformation might lead to maximally expressive MPNNs at
the cost of potentially exponential pre-processing time depending on the graph type.
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A Proof of Proposition 1

We prove Proposition 1 which states that Φ(CAT(G)) ≤ Φ(G) + 7 for every outerplanar graph G.

Proof. Let a, b ∈ V (CAT(G)) such that d(a, b) = Φ(CAT(G)). We call a node a tree node if it
was not part of a block in G and was not created by CAT. A node that is not a tree node is either a
Hamiltonian cycle node, a pooling node, a block pooling node, or a global block pooling node.

Case 1: Both a, b are not tree nodes. By Observation 2: d(a, b) ≤ 6.

Case 2: Node a is a tree node and b is not. Let x ∈ V (G) be the closest articulation node to a in
CAT(G). Then, there is a path of length dG(a, x) in CAT(G) from a to x. We can extend this path
by one node to reach a pooling node. By Definition 2, there exists a path of length at most 6 from
this pooling node to b. Thus d(a, b) ≤ dG(a, x) + 7 ≤ Φ(G) + 7.

Case 3: Both a, b are tree nodes.

Case 3a: Suppose that the shortest path between a and b in G does not contain any edge inside of
an outerplanar block, then d(a, b) = dG(a, b) ≤ Φ(G).

Case 3b: Suppose that the shortest path between a and b in G contains one or more edges inside
exactly one block. Then, we can enter and exit this block in CAT(G) through a path r1, p1, b, p2, r2,
where r1, r2 are articulation nodes, p1, p2 are pooling nodes, and b is a block node. Note that the
articulation nodes were part of the path in G which implies d(a, b) = dG(a, r1) + dG(r2, b) + 4 =
dG(a, b) − dG(r1, r2) + 4. Furthermore, we do not need to take the one or more edges inside the
block to go from r1 to r2. Using dG(r1, r2) ≥ 1 we obtain d(a, b) = dG(a, b) − dG(r1, r2) + 4 ≤
dG(a, b) + 3 ≤ Φ(G) + 3.

Case 3c: Suppose that the shortest path between a and b in G contains two or more edges that are
contained in two or more different blocks. Then, for CAT(G) we can shortcut from the first to the
last block node of the shortest path between a and b through a path r1, p1, b1, g, b2, p2, r2, where
r1, r2 are articulation nodes, p1, p2 are pooling nodes, b1, b2 are block nodes, and g is the global
block pooling node. Note that the articulation nodes were part of the path in G which implies that
d(a, b) = dG(a, r1) + dG(r2, b) + 6 = dG(a, b) − dG(r1, r2) + 6. By assumption, we know that
dG(r1, r2) ≥ 2 which implies d(a, b) = dG(a, b)−dG(r1, r2)+6 ≤ dG(a, b)+4 ≤ Φ(G)+4.

B Details for Experimental Evaluation

Our models are implemented in PyTorch-Geometric (Fey & Lenssen, 2019) and trained on a single
NVIDIA GeForce RTX 3080 GPU. We use WandB (Biewald, 2020) for tracking. The used server
has 64 GB of RAM, has an 11th Gen Intel(R) Core(TM) i9-11900KF CPU running at 3.50GHz.
Table 5 shows the hyperparameters for our MPNNs on different datasets. We use the same hyperpa-
rameter grid for MPNNs combined with CAT. We used a smaller hyperparameter grid for MOLHIV
than for ZINC, as MOLHIV is larger than ZINC meaning that training takes much longer. When bench-
marking the speed of GIN against GIN+CAT we train for 100 epochs with a batch size of 128 on
all datasets with the same hyperparameters for both models (see Table 5).

CAT implementation. CAT adds an additional feature to each node which encodes the type of
that node i.e., nodes from Hamiltonian cycles, block nodes, pooling nodes, articulation nodes and
or global block nodes. Furthermore, we create additional edge features encoding the types of nodes
incident to this edge i.e., an edge between two different nodes in a Hamiltonian cycle has a different
type than an edge from a pooling node to the block node. For newly created nodes and edges we
set their remaining features to the feature of the node / edge they are based on; for example, a
pooling node will have the features of the node they are performing the pooling operation for. For
nodes that have no natural representation in the graph (block and block pooling nodes) we set these
features to 0. To ensure that only these nodes get assigned 0 features, we shift the values of these
features for all other nodes by 1. Note that our MPNNs treat the distance on edges in blocks as a
categorical feature. Representing the distances as numerical features did not improve performance
in preliminary experiments.
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Table 5: Hyperparameter grids for GIN, GCN and GAT on different datasets.

Parameter All datasets
except MOLHIV MOLHIV

Benchmarking
GIN (+CAT)
all datasets

Message passing layers 2, 3, 4, 5 4, 5 4
Final MLP layers 2 2 2
Pooling operation mean, sum mean, sum mean
Embedding dimension 64, 128, 256 64,128 64
Jumping knowledge last concat concat
Dropout rate 0, 0.5 0.5 0

C Additional Figures

We provide additional visualizations of the CAT transformation. In all figures, the color of the
vertices in the transformed graph have the following meaning: red nodes are from Hamiltonian
cycles, blue nodes correspond to blocks, yellow nodes pool the nodes from Hamiltonian cycles,
orange nodes correspond to articulation nodes and the gray node pools block nodes. Figure 6 shows
a synthetic example with a non-outerplanar graph. Figure 7 demonstrates CAT on various synthetic
graphs. Figure 8 shows the result of CAT on molecular graphs from ZINC and MOLHIV. Somewhat
ironically, CAT often generates frog graphs on MOLHIV as can be seen in Figure 9.

Figure 6: Left: example non-outerplanar graph. Right: result of applying CAT to the graph. Colors
indicate the type of node (see Appendix C).
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Figure 7: Left: example graphs. Right: result of applying CAT to these graphs. Colors indicate the
type of node (see Appendix C).
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Figure 8: Left: example graphs from MOLHIV (top) and ZINC (bottom). Right: result of applying
CAT to these graphs. Colors indicate the type of node (see Appendix C).

16



Figure 9: Left: example graphs from MOLHIV. Right: result of applying CAT to the graph. Colors
indicate the type of node (see Appendix C).
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