
Maximally Expressive GNNs for Outerplanar Graphs

Franka Bause∗
Faculty of Computer Science

UniVie Doctoral School Computer Science
University of Vienna, Vienna, Austria
franka.bause@univie.ac.at

Fabian Jogl∗
Center for Artificial Intelligence and Machine Learning

Machine Learning Research Unit
TU Wien, Vienna, Austria

fabian.jogl@tuwien.ac.at

Pascal Welke
Machine Learning Research Unit

TU Wien, Vienna, Austria
pascal.welke@tuwien.ac.at

Maximilian Thiessen
Machine Learning Research Unit

TU Wien, Vienna, Austria
maximilian.thiessen@tuwien.ac.at

Abstract
Most pharmaceutical molecules can be represented as outerplanar graphs. We
propose a graph transformation that makes the Weisfeiler-Leman (WL) test and
message passing graph neural networks maximally expressive on outerplanar
graphs. While existing research predominantly focuses on enhancing expressivity
of graph neural networks beyond the WL test on arbitrary graphs, our goal is
to distinguish pharmaceutical graphs specifically. Our approach applies a linear
time transformation, building on the fact that biconnected outerplanar graphs
can be uniquely identified by their Hamiltonian adjacency list sequences. This
pre-processing step can then be followed by any graph neural network. We
achieve promising results on molecular benchmark datasets while keeping the
pre-processing time low, in the order of seconds for common benchmarks.

1 Introduction
We study graph neural networks (GNNs) for the family of outerplanar graphs and devise a model that
can distinguish all non-isomorphic outerplanar graphs. Most previous work relates the expressivity of
GNNs to some k-dimensional Weisfeiler-Leman isomorphism test (k-WL), most famously showing
that some GNNs can distinguish exactly all those graphs that k-WL can distinguish [Maron et al.,
2019b; Morris et al., 2020; Xu et al., 2019]. In contrast, here we present an expressivity result for
a well established class of graphs not defined by (generalized) message passing. We have chosen
outerplanar graphs, since most pharmaceutical compounds are outerplanar [Droschinsky et al., 2017;
Horváth and Ramon, 2010; Horváth et al., 2006]. In fact, most well-known benchmark datasets for
graph-level tasks contain over 92% outerplanar graphs (see Table 2 in the appendix).

Relying on an isomorphism test for biconnected outerplanar graphs by Colbourn and Booth [1981],
we develop a linear-time graph transformation [Jogl et al., 2023; Veličković, 2022]. This enables
1-WL, and thus message passing neural networks (MPNNs), to distinguish such graphs. We rely on
Hamiltonian adjacency lists (HALs), which encode the structure of each biconnected component,
and the fact that 1-WL can distinguish labeled trees. We discuss related work in Appendix D.

2 Preliminaries
A graph G = (V,E, µ, ν) consists of a set of nodes V , a set of edges E ⊆ V ×V and µ : V → X and
ν : E → X arbitrary attributes for the nodes and edges, respectively. We refer to an edge from u to v
by uv, and in case of undirected graphs uv = vu. The in-neighbors of a node u ∈ V are denoted by
Ni(u) = {v | vu ∈ E}. The out-neighbors of a node u ∈ V are denoted by No(u) = {v | uv ∈ E}

∗Equal contribution. For an extended version, see [Bause et al., 2023].

F. Bause et al., Maximally Expressive GNNs for Outerplanar Graphs (Extended Abstract). Presented at the
Second Learning on Graphs Conference (LoG 2023), Virtual Event, November 27–30, 2023.

and in case of undirected graphs, Ni = No. We focus on undirected input graphs, and will transform
them into directed ones. A (directed) cycle (v1, . . . , vk) is a sequence of k distinct nodes, with
∀i ∈ {1, . . . , k − 1} : vivi+1 ∈ E and vnv1 ∈ E. Given a graph G, we denote the shortest path
distance between vi and vj by dG(vi, vj). A graph is outerplanar if it can be drawn in the plane
without edge crossings and with all nodes belonging to the exterior face (for more details, see, e.g.,
Felsner [2012]). We call an undirected graph with at least three vertices biconnected if the removal of
any single node does not disconnect the graph. A biconnected component is a maximal biconnected
subgraph and we call biconnected outerplanar components of a graph blocks. Two graphs G and
H are isomorphic, if there exists a bijection ϕ : V (G) → V (H), so that ∀u, v ∈ V (G) : µ(v) =
µ(ϕ(v)) ∧ uv ∈ E(G)⇔ ϕ(u)ϕ(v) ∈ E(H) ∧ ∀uv ∈ E(G) : ν(uv) = ν(ϕ(u)ϕ(v)). An in-tree T
is a connected, directed, acyclic graph with a distinct root with no outgoing edges and other nodes
have one outgoing edge.

a

b

c

d

e

j

f

g

h

i

a

a a

b

j

j

x

x

x

h

h

i

y

a

c

d

a

c

d
a

e

f

a

e

f

j

g

h
h

j

g

a

b

c

d

e

j

f

g

h

i

a

a a

b

j

j

x

x

x

h

h

i

y

a

c

d

a

c

d
a

e

f

a

e

f

j

g

h
h

j

g

G CAT(G)

Figure 1: A graph and its CAT transformation.
Original node labels are represented by letters,
edge and node labels from the CAT transform are
represented by colors. CAT(G) looks like a cat.

The 1-dimensional Weisfeiler-Leman al-
gorithm (WL) iteratively assigns colors
to nodes, starting with colors representing
node labels (or a uniform coloring for un-
labeled nodes). The color of v ∈ V (G) is
updated each iteration according to ci+1(v) =
h (ci(v), {{(ν(uv), ci(u)) | u ∈ Ni(v)}}),
where h is an injective function and c0 = µ. The
unfolding tree with height i of a node v ∈ V (G)
is defined as F v

i = (v, {{Fu
i−1 | u ∈ Ni(v)}}),

where F v
0 = ({v}, ∅). The unfolding trees F v

i
and Fw

i of two nodes v and w are isomorphic
iff the colors of the nodes in iteration i are
the same. WL has historically been used
as a heuristic for graph isomorphism. Let
WL(G) = {{c∞(v) | v ∈ V (G)}} be the
multiset of node colors in the stable partition-
ing [Arvind et al., 2015]. Two graphs G and
H are not isomorphic, if WL(G) ̸= WL(H).
However, if WL(G) = WL(H), G and H
might not be isomorphic (WL for example
cannot distinguish a 6-cycle from two triangles).

A Hamiltonian cycle is a cycle containing each node of the graph exactly once. Biconnected
outerplanar graphs have a unique Hamiltonian cycle, that can be found in linear time [Mitchell, 1979].
Annotating each node with the sorted distances dC to all its neighbors on the two directed variants
of the Hamiltonian cycle C gives us Hamiltonian adjacency lists (HALs). Figure 3 in the Appendix
shows two graphs annotated with their HALs in both directions of the Hamiltonian cycle. Following
the Hamiltonian cycle in one direction and concatenating the HALs gives a sequence S (and a reverse
sequence R, for the other direction). This HAL sequence uniquely identifies biconnected outerplanar
graphs (if both directions and cyclic shift are considered):
Lemma 1 (Colbourn and Booth [1981]). Two biconnected outerplanar graphs G and H with HAL
and reverse sequences SG, SH and RG, RH are isomorphic, iff SG is a cyclic shift of SH or RH .

3 Identifying Outerplanar Graphs Using Weisfeiler-Leman
We develop a graph transformation called cyclic adjacency transform (CAT), that enables WL to
distinguish all outerplanar graphs. We start by first introducing CAT∗, enabling WL to distinguish
any two biconnected outerplanar graphs, and then extend it in CAT to all outerplanar graphs.

Identifying biconnected outerplanar graphs using Weisfeiler-Leman. We first present a graph
transformation called CAT∗, that allows the Weisfeiler-Leman algorithm to distinguish any two
biconnected outerplanar graphs. Figure 2 shows an example of CAT∗.
Definition 1. The CAT∗ transformation takes a biconnected outerplanar graph G = (V,E, µ, ν) and
yields a modified graph G′ = CAT∗(G) = (V ′, E′, µ′, ν′) by performing the steps below.

1. Let C = (v1, . . . , vn) be a (directed) Hamiltonian cycle of G and
←−
C be its reverse.

2

a

bc

d

e f

→ a

bc

d

e f

1

1

1

1

1

1

4

2

3

3
a

bc

d

e f

1

1

1

1

1

1

2

4

3

3

b

a

c

a b

d

a c

f

e

1

2 3 1

4 1 3 1 1

Figure 2: Biconnected outerplanar graph G, CAT∗(G) and the unfolding tree of one of its nodes.

2. Add node disjoint copies of C and
←−
C to G′ and set ν′(e) = (1, ν(e)) for all edges in G′.

3. Let D ⊆ E be the edges of G not on the (undirected) Hamiltonian cycle. Add edges in both
directions to G′ for the copies of C and

←−
C for each edge in D: E(G′) = E(G′)∪Ed∪E←−d with

Ed =
⋃
{vi,vj}∈D{(v

′
i, v
′
j), (v

′
j , v
′
i)} and E←−

d
=

⋃
{vi,vj}∈D{(v

′′
i , v
′′
j), (v

′′
j , v
′′
i)} for copies v′i

of vi in C (resp. v′′i in
←−
C). Set µ′(v′i) = µ(vi) and µ′(v′′i) = µ(vi) for the nodes in G′.

4. ∀(vi, vj) ∈ Ed set ν′(vi, vj) = (dC(vj , vi), ν(vi, vj)) and ∀(v′i, v′j) ∈ E←−
d

set ν′(v′i, v
′
j) =

(d←−
C
(v′j , v

′
i), ν(vj , vi)).

Theorem 1. Two biconnected outerplanar graphs G and H are isomorphic, if and only if
WL(CAT∗(G)) = WL(CAT∗(H)).

Proof. Two graphs are distinguished by WL iff the multisets of node colors of their stable colorings
differ. Trivially, |V (G)| ̸= |V (H)| ⇒ |V (CAT∗(G))| ̸= |V (CAT∗(H))| ⇒ WL(CAT∗(G)) ̸=
WL(CAT∗(H)), so we only focus on graphs with |V (G)| = |V (H)|. Two nodes only get the same
color, if their unfolding trees are isomorphic. The first number in the HAL of each node is always 1,
so it can be ignored, and the last number is always |V (G)| − 1, so this can simply be reconstructed
by |V (CAT ∗(G))|. The rest of the HAL sequence and the node labels of G can be reconstructed
from the unfolding tree of any node in CAT∗(G): Of course, each node has two direct neighbors
in the Hamiltonian cycle. In the unfolding tree these are the parent and the single child with the
1-annotated edge. All other neighbors in the HAL can be reconstructed by looking at the weights of
the edges that do not have weight 1. Figure 4 shows an example. Looking at any two biconnected
outerplanar graphs with n nodes, Weisfeiler-Leman will be able to distinguish them after at most n
iterations, iff they are non-isomorphic: Since the HAL sequence is encoded in the unfolding trees
from all starting points (cyclic shift) and, because of the reverse copy, in both directions (reverse
direction), this identifies isomorphism by Lemma 1.

The CAT transformation. We define the CAT transformation by applying CAT∗ to the blocks of
the graphs and adding nodes and edges to make outerplanar graphs distinguishable by WL.
Definition 2. The CAT(G) = G′ transformation, maps a graph G to a new graph G′ as follows:

1. Let B1, . . . , Bℓ be the blocks of G and let F be the graph induced by the edges of G that are
not in any block plus the nodes that are present in more than one block. Let {⊥,□, ▷◁, ⋆,△} be
distinct node labels not in X .

2. Add F to G′ with labels µ′(v) = (⊥, µ(v)) for v ∈ F .

3. For each block Bi in G:

3.1. Add (B′i,
←−
B′i) = CAT∗(Bi) to G′ (with labels).

3.2. Let Ai = V (Bi) ∩ V (F) be the nodes of Bi in F .

3.3. Let γi : Ai → V (B′i) map nodes of F to their copy in B′i and←−γi to the copy in
←−
B′i.

3.4. Add a node bi and (undirected) edges {bi, v} for all v ∈ V (Bi) ∪ V (
←−
B′i) to G′.

3.5. For each a ∈ Ai add a node p and edges {p, bi}, {p, a}, {p, γi(a)}, {p,←−γi (a)} to G′.
3.6. Let µ′(bi) =□, and for each a ∈ Ai let µ′(a) = (▷◁, µ(a)) and µ′(p) = (⋆, µ(a)) for the

corresponding p.

3

4. Add a node g with µ′(g) =△ to G′ and for all nodes bi, add an edge {g, bi} to G′.

5. Let CAT(G) = G′.

An example for a graph G and its corresponding graph G′ = CAT(G) can be seen in Figure 1.
Theorem 2. Two outerplanar graphs G and H are isomorphic, iff WL(CAT(G)) = WL(CAT(H)).

Proof. Following Theorem 1, each block will be uniquely identified by WL. Since the additional
nodes have distinct labels, they will not cause WL to falsely report two blocks as isomorphic when
they are not. The information about the entire HAL sequence of each block is stored in the b nodes
after some iteration. The p nodes connect the block and b nodes to the rest of the graph, determining
the orientation of the block. Note that the graph returned by CAT without the CAT∗ blocks and the
node g is a tree. Relying on the labels of the p and b nodes, we can reconstruct the original graph
from this tree. As WL can distinguish labeled trees [Arvind et al., 2015; Kiefer, 2020], it can thus
distinguish non-isomorphic outerplanar graphs using CAT. For the other direction, note that CAT is
permutation-invariant: for two isomorphic graphs G and H , the graphs CAT(G) and CAT(H) are
isomorphic and WL will give the same output for both.

Importantly, we can compute CAT(G) in linear time. The computational complexity is dominated by
the computation of the blocks [Tarjan, 1972] and their Hamiltonian cycles [Mitchell, 1979], which
both require linear time. Note that we only add a linear number of nodes and edges. From Xu
et al. [2019] it follows, that MPNNs that are as expressive as 1-WL can distinguish CAT(G) and
CAT(H) for non-isomorphic outerplanar graphs G and H . Thus, we propose to transform the input
graphs using CAT and then use any MPNN on them. We can also apply CAT to non-outerplanar
graphs. In this case, the biconnected outerplanar components are identified and the steps described in
Definition 2 are performed. The remaining graph will simply be copied without modification. This
never reduces expressivity but also is not guaranteed to distinguish general non-outerplanar graphs.

4 Experimental Evaluation

Table 1: Test performance of different GNNs over
10 random seeds. Arrows indicate whether smaller
(↓) or bigger (↑) results are better. Bold indicates
the best performing model for a dataset.

Model ZINC
MAE ↓

MOLHIV
ROC-AUC ↑

GIN 0.177± 0.006 76.5± 1.2
CAT+GIN 0.125± 0.006 78.4± 0.6

We investigate whether our proposed CAT can
improve the predictive performance of the
MPNN GIN [Xu et al., 2019] on two commonly
used molecular benchmarks: ZINC [Gómez-
Bombarelli et al., 2018; Sterling and Irwin,
2015] and ogbg-molhiv [Hu et al., 2020]. For
this, we compare CAT+GIN against GIN on both
datasets. We tune the hyperparameters on the
validation sets and evaluate the best performing
hyperparameters 10 times. For each dataset we
track a commonly used evaluation metric for
this dataset and report the mean and standard deviation of this metric in the epoch with the highest
validation performance. More details can be found in Appendix C and in our code repository2. Table 1
shows the results of our experiments and we can see that CAT+GIN convincingly outperforms GIN
on both datasets. To measure the speed of CAT we measure its runtime on the training splits of ZINC
and MOLHIV averaged over 10 trials. CAT requires 38± 1s for ZINC and 133± 1s for MOLHIV.

5 Conclusion
We proposed a graph transformation, which enables the Weisfeiler-Leman test to be maximally
expressive on outerplanar graphs by building on the fact that biconnected outerplanar graphs can
be uniquely identified by their Hamiltonian adjacency list sequences. Our transformation encodes
these HAL sequences in unfolding trees. We achieve promising first empirical results on molecular
benchmark datasets, while keeping the pre-processing time very low. Interesting further directions
would be extending the transformation to non-outerplanar graphs and investigating the effect of the
transformation on the issues of oversquashing and oversmoothing.

2https://github.com/ocatias/OuterplanarGNNs_LoG

4

https://github.com/ocatias/OuterplanarGNNs_LoG

Acknowledgements
This work was supported by the Vienna Science and Technology Fund (WWTF) through project
VRG19-009 and through project ICT22-059.

References
Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power

of graph neural networks with random node initialization. In IJCAI, 2021. 8
Vikraman Arvind, Johannes Köbler, Gaurav Rattan, and Oleg Verbitsky. On the power of color

refinement. In Fundamentals of Computation Theory, 2015. 2, 4
Franka Bause, Fabian Jogl, Patrick Indri, Tamara Drucks, David Penz, Nils Morten Kriege, Thomas

Gärtner, Pascal Welke, and Maximilian Thiessen. Maximally expressive GNNs for outerplanar
graphs. In New Frontiers in Graph Learning Workshop (GLFrontiers@NeurIPS), 2023. 1

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael Bronstein, and Haggai Maron. Equivariant subgraph aggregation networks.
In ICLR, 2021. 8

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.
com/. Software available from wandb.com. 7

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Liò, Guido Montúfar, and
Michael Bronstein. Weisfeiler and Lehman go cellular: CW networks. In NeurIPS, 2021. 8

Charles J. Colbourn and Kellogg S. Booth. Linear time automorphism algorithms for trees, interval
graphs, and planar graphs. SIAM Journal on Computing, 10(1):203–225, 1981. 1, 2, 7

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph repre-
sentations. NeurIPS, 2021. 8

George Dasoulas, Ludovic Dos Santos, Kevin Scaman, and Aladin Virmaux. Coloring graph neural
networks for node disambiguation. In IJCAI, 2020. 8

Andre Droschinsky, Nils Kriege, and Petra Mutzel. Finding largest common substructures of
molecules in quadratic time. In International Conference on Current Trends in Theory and
Practice of Informatics, 2017. 1

Stefan Felsner. Geometric graphs and arrangements: some chapters from combinatorial geometry.
Springer, 2012. 2

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019. 7

Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel,
Ryan P. Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continu-
ous representation of molecules. ACS Central Science, 2018. 4, 7

Tamás Horváth and Jan Ramon. Efficient frequent connected subgraph mining in graphs of bounded
tree-width. Theoretical Computer Science, 411(31-33):2784–2797, 2010. 1, 8

Tamás Horváth, Jan Ramon, and Stefan Wrobel. Frequent subgraph mining in outerplanar graphs. In
KDD, 2006. 1, 8

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open Graph Benchmark: Datasets for machine learning on graphs. In NeurIPS,
2020. 4, 7

Neil Immerman and Eric Lander. Describing graphs: A first-order approach to graph canonization.
Yale University Press, 1990. 8

Fabian Jogl, Maximilian Thiessen, and Thomas Gärtner. Expressivity-preserving GNN simulation.
In NeurIPS, 2023. 1

Sandra Kiefer. Power and limits of the Weisfeiler-Leman algorithm. PhD thesis, RWTH Aachen
University, 2020. 4, 8

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. NeurIPS, 2019a. 8

5

https://www.wandb.com/
https://www.wandb.com/

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In ICLR, 2019b. 1

Sandra L. Mitchell. Linear algorithms to recognize outerplanar and maximal outerplanar graphs.
Information Processing Letters, 9(5):229–232, 1979. 2, 4

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In AAAI, 2019. 8

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards
scalable higher-order graph embeddings. In NeurIPS, 2020. 1

Teague Sterling and John J. Irwin. Zinc 15 – ligand discovery for everyone. Journal of Chemical
Information and Modeling, 2015. 4, 7

Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM Journal of Computing, 1
(2):146–160, 1972. 4

Petar Veličković. Message passing all the way up. In ICLR Workshop on Geometrical and Topological
Representation Learning, 2022. 1

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019. 1, 4, 8

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of GNNs
via graph biconnectivity. In ICLR, 2023. 8

6

A Outerplanarity of Graph Datasets
Table 2 shows the percentage of outerplanar graphs in popular molecular datasets.

Table 2: Common benchmark datasets and the percentage of outerplanar graphs in them: NCI
(https://cactus.nci.nih.gov/) ZINC [Gómez-Bombarelli et al., 2018; Sterling and Irwin,
2015] and all other datasets are from ogb [Hu et al., 2020].

Dataset #Graphs Outerplanar

NCI 250251 94%
ZINC 12000 98%
molhiv 41127 92%
moltox21 7831 96%
molesol 1128 97%
molbace 1513 93%
molclintox 1477 94%
molbbbp 2039 92%
molsider 1427 92%
moltoxcast 8576 96%
mollipo 4200 96%

B Example for Hamiltonian Adjacency Lists
Figure 3 shows two graphs and their directed Hamiltonian cycles. The nodes are annotated with their
HAL, the list of distances on the Hamiltonian cycle to their neighbors.

C Experimental Evaluation
Our models are implemented in PyTorch-Geometric [Fey and Lenssen, 2019] and trained on a single
NVIDIA GeForce RTX 3080 GPU. We use WandB [Biewald, 2020] for tracking. The used server
has 64 GB of RAM, has an 11th Gen Intel(R) Core(TM) i9-11900KF CPU running at 3.50GHz and
uses Fedora 38. For ZINC we train with a batch size of 128 and an initial learning rate of 10−3 that
is halved whenever the validation metric does not improve for 20 epochs. Training stops after 500
epochs or after the learning rate dips below 10−5. For MOLHIV we train with a batch size of 128
and a fixed learning rate of 10−3 for 100 epochs. Table 3 shows the hyperparameters for GIN and
CAT+GIN. We used the same hyperparameters for both models. We used a smaller hyperparameter
grid for MOLHIV than for ZINC, as MOLHIV is larger than ZINC meaning that training takes much
longer.

More details on CAT. CAT adds an additional feature to each node which encodes the type of that
node i.e., nodes from Hamiltonian cycles, block nodes, pooling nodes, articulation nodes and or
global block nodes. Furthermore, we create additional edge features encoding the types of nodes
incident to this edge i.e., an edge between two different nodes in a Hamiltonian cycle has a different
type than an edge from a pooling node to the block node. For newly created nodes and edges we set
their remaining features to the feature of the node / edge they are based on; for example, a pooling
node will have the features of the node they are performing the pooling operation for. For nodes that

a

b

cd

e

f

g

h i

j

19

139

1919

179

19

139

19 19

179

a

b

cd

e

f

g

h i

j

19

179

1919

139

19

179

19 19

139

a

b

cd

e

f

g

h i

j

19

189

1919

129

19

189

19 19

129

a

b

cd

e

f

g

h i

j

19

129

1919

189

19

129

19 19

189

Figure 3: Two graphs and their directed Hamiltonian cycles. Nodes are annotated with their HALs,
the distances on the Hamiltonian cycle to their neighbors [Colbourn and Booth, 1981].

7

https://cactus.nci.nih.gov/

have no natural representation in the graph (block and block pooling nodes) we set these features
to 0. To ensure that only these nodes get assigned 0 features, we shift the values of these features
for all other nodes by 1. Note that our GNN treats the distance on edges in blocks as a categorical
feature. We are not sure whether this is advantageous and will experiment with treating these features
as ordinals in the future.

Table 3: Hyperparamter grids for different datasets.

Parameter GIN, CAT+GIN
On ZINC

GIN, CAT+GIN
On MOLHIV

Message passing layers 2, 3, 4, 5 4, 5
Final MLP layers 2 2
Pooling operation mean, sum mean, sum
Embedding dimension 64, 128, 256 64,128
Jumping knowledge last concat
Dropout rate 0, 0.5 0.5

D Discussion and Related Work
It is well known that the expressiveness of MPNNs is bounded by the 1-WL test [Morris et al.,
2019; Xu et al., 2019]. The unlabled graphs corresponding to decalin and bicyclopentyl cannot be
distinguished by any MPNN. As these two graphs are outerplanar this shows that MPNNs are not
expressive enough for outerplanar graphs. Even some biconnected outerplanar graphs cannot be
distinguished by MPNNs, see Fig. 3. The importance of biconnectivity in the context of GNNs
was recently discussed by Zhang et al. [2023]. The fact that many pharmaceutical molecules are
outerplanar is well known in the graph mining community [Horváth and Ramon, 2010; Horváth et al.,
2006]. Cotta et al. [2021] discussed outerplanar graphs in the context of reconstruction with GNNs.

It is known that 3-WL is sufficient and necessary to distinguish all outerplanar graphs [Kiefer,
2020]. Hence, any GNN matching the expressivity of 3-WL, such as 3-IGN [Maron et al., 2019a] or
3-GNN [Morris et al., 2019], is capable of solving our main goal of distinguishing all outerplanar
graphs. The 3-WL test, however, runs in O(n3 log n) time [Immerman and Lander, 1990; Kiefer,
2020], which is practically inefficient already for medium-sized graphs. Similarly, 3-GNN and 3-IGN
run in roughly O(n3) time, see Maron et al. [2019a]; Morris et al. [2019]. Contrary, we perform a
linear-time pre-processing of the graph and run standard 1-WL, or an MPNN, with a much more
efficient runtime ofO(n log n). This is the same asymptotic runtime as running 1-WL on the original
graphs, as we only add a linear number of nodes and edges in our graph transformation.

Finally, there are other approaches towards building more expressive GNNs such as methods that
extract subgraphs [Bevilacqua et al., 2021; Maron et al., 2019a] or lift the graph to regular cell
complexes Bodnar et al. [2021]. The idea of using additional node labels to increase expressivity is
also well known [Abboud et al., 2021; Dasoulas et al., 2020].

E Additional Figures
Fig 5 demonstrates the difference between two blocks overlapping in the same articulation node (top)
or in different articulation nodes (bottom). Fig 6 demonstrates CAT on real-life molecular graphs. We
would like to point out that one of the graphs looks like a frog.

8

a

bc

d

e f

1

1

1

1

1

1

2

4

3

3

b a

c
a

b

d
a

c

f e d

a
f

d

c

c b

a

c

d

f

1

2

3

1

4

1

3

1

1 1

3

1
3

2

1 1

4 1
3

2

Figure 4: One part of the CAT∗ transformation of the graph from Figure 2 and an example unfolding
tree of one of its nodes from which the HAL sequence of the original graph can be reconstructed.

Figure 5: Left: example graphs; Right: Result of applying CAT to these graphs. Colors indicate the
type of node: red nodes are from Hamiltonian cycles, blue nodes correspond to blocks, yellow nodes
pool nodes from the Hamiltonian cycles, orange nodes correspond to articulation nodes and the grey
node pools block nodes.

9

Figure 6: Left: example graphs from MOLHIV (top) and ZINC (bottom); Right: Result of applying
CAT to these graphs. Colors indicate the type of node: red nodes are from Hamiltonian cycles, blue
nodes correspond to blocks, yellow nodes pool nodes from the Hamiltonian cycles, orange nodes
correspond to articulation nodes and the grey node pools block nodes.

10

	1 Introduction
	2 Preliminaries
	3 Identifying Outerplanar Graphs Using Weisfeiler-Leman
	4 Experimental Evaluation
	5 Conclusion
	A Outerplanarity of Graph Datasets
	B Example for Hamiltonian Adjacency Lists
	C Experimental Evaluation
	D Discussion and Related Work
	E Additional Figures

