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Abstract—The application of complex machine learning models
has elicited research to make them more explainable. However,
most explainability methods cannot provide insight beyond the
given data, requiring additional information about the context.
We argue that harnessing prior knowledge improves the ac-
cessibility of explanations. We hereby present an overview of
integrating prior knowledge into machine learning systems in
order to improve explainability. We introduce a categorization
of current research into three main categories which integrate
knowledge either into the machine learning pipeline, into the
explainability method or derive knowledge from explanations.
To classify the papers, we build upon the existing taxonomy of
informed machine learning and extend it from the perspective
of explainability. We conclude with open challenges and research
directions.

Index Terms—Machine learning, Taxonomy, Human computer
interaction, Knowledge representation

I. INTRODUCTION

The complexity of current machine learning (ML) models
prevents humans from understanding the underlying decision
rule which was learned during training. Most models can only
be scrutinized in terms of the correlation of input and output
features, leaving their internal workings opaque. Particularly
in high-stake scenarios, the resulting lack of interpretability
poses a severe drawback. For example, consider applications
in which an AI-supported system predicts patient sepsis or
rejects a loan. In these scenarios, insight into the decision
process is important to ensure safety, fairness and compliance
with legislation [1]. As a consequence, recent work focuses
on explainability to improve transparency and trustworthiness
of machine learning models [2, 3, 4, 5, 6].

While explanation capabilities have been investigated since
the development of expert systems [7], the advancements in
research and the prevalent use of ML systems lead to new
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requirements and expectations. The computational steps a
model takes may exactly describe how the algorithm comes up
with a prediction, but the typical questions are more concerned
with why a model makes a certain prediction, asking for
causal or contrastive explanations [8]. Explanations are by
nature context-sensitive as there is no explanation without
a question and no question without context. The context of
an explanation encompasses not only the matter that is to be
explained but also the recipient of the explanation [9, 10, 11].
For example, an explanation of a clinical decision support
system needs to be primarily intelligible to the clinician and
not to the patient. Explainability methods do not only have
to bridge a communication gap between ML systems and
experts [12], but their outputs also need to be accessible to a
diverse group of users and meet their respective requirements.
The context-sensitive nature of the task makes it inherently
difficult to develop a generalized explainability method that
can be automatically deployed under all circumstances.

If the explainability method itself is not context-aware,
fulfillment of this necessity is delegated to the user. Molnar
et al. [13] point out pitfalls of explainability methods that
require additional knowledge by the user in order to gain
reliable new insights and to prevent false conclusions. These
methods are part of a larger class of data-driven explainability
methods that produce feature attribution values for a predic-
tion. Feature attribution refers to the effect and importance
of data features on the model prediction. These methods can
detect a correlation but they do not provide an answer on
why a feature is relevant to the model output. To answer
this question, the user has to apply their own knowledge to
put the results into context. However, a layperson might not
have the necessary knowledge or the feature values might
be intrinsically difficult to interpret, e.g., in the case of raw
sensor data like audio signals. Another limitation is that these
explanations are data-constrained, implying that they cannot
provide insight beyond the data at hand [14].



We claim that the integration of prior knowledge is im-
portant to overcome those limitations and to provide the user
with the necessary context, thus increasing the accessibility
of an explainability method. In fact, the integration of prior
knowledge was already motivated in the 2000s in connection
with support vector machines [15] and has been revisited for
scientific discoveries from data and ML output [14, 16].

Recent research introduced the notion of informed ma-
chine learning (IML), which offers a comprehensive taxonomy
on the integration of prior knowledge into ML [17]. IML
promotes a symbiosis of data-driven neural networks with
knowledge-based approaches such that the strengths of both
paradigms are combined, the learning capacity of neural net-
works with the comprehensibility of prior knowledge. In their
work, the authors focused on the classical accuracy-driven
learning pipeline and identified explainability as a possible
side effect of knowledge integration. In this work, we take the
IML taxonomy as a formal basis for further investigation of
the effect of prior knowledge on explainability.

Li et al. [3] have addressed a similar point of view and pro-
vide a distinction between data-driven and knowledge-aware
explainable ML. They subdivide the knowledge-aware ap-
proaches into broad categories of general knowledge methods
and knowledge-based models. However, the structure from Li
et al. [3] mainly considers approaches from a method-centric
standpoint while possibilities for knowledge integration are
not discussed. Other surveys focus their review on modeling
(prior) knowledge [18], or applications in specific domains
[14]. So far, there exists no systematic overview that discerns
between the different ways to integrate prior knowledge such
that it benefits explainable ML.

In this paper, we present approaches that harness prior
knowledge to make machine learning models more explain-
able. Our contributions are summarized as follows:

• We provide an overview on how the integration of prior
knowledge benefits explainability in existing work.

• We identify three archetypes of different knowledge
integration approaches to facilitate the application and
adaptation of these methods.

• We highlight open challenges and research directions.
The framework of knowledge-driven explainable machine

learning is schematically displayed in Fig. 1 and also outlines
the core structure of the paper. The figure shows three ways to
integrate knowledge. The first approach, shown in green, is to
integrate knowledge into the machine learning pipeline. Blue
exemplifies the integration of knowledge into the explainability
method. The yellow arrows show how knowledge can be
derived from explanations and then be integrated into the
machine learning pipeline.

In Section II, we define and provide background on ex-
plainability and introduce informed machine learning with its
respective taxonomy. In Section III, we investigate approaches
on how prior knowledge can inform explainable machine
learning. A discussion is provided in Section IV followed by
open challenges and research directions. Finally, we summa-
rize our findings in Section V.

II. BACKGROUND

We give an overview on current methods to make black-box
machine learning models more understandable by providing
explanations. In addition, we highlight some limitations of
these methods, mainly the fact that measuring their quality
is a fundamentally difficult endeavor. Afterwards, we describe
a recently developed formalism, how prior knowledge can be
incorporated into the machine learning pipeline [17], which
builds the basis for our work.

A. Explainable Machine Learning

Explanations constitute an important part of human interac-
tions because, in a societal context, humans are interested in
the motivations behind a decision [19]. Following the work by
Miller [8], an explanation describes the process of abductive
inference as well as the final product, i.e., the answer to a why-
question. With the increasing application of machine learning
models, explanations are required for multiple reasons: veri-
fication of the system, improvement of the system, learning
from the system and compliance to legislation [1, 20].

We base our definition of explainable machine learning on
prior work [21, 22] in which the authors draw a distinc-
tion between interpretable and explainable machine learning
models. The former describes models that demonstrate an
inherent transparency. The latter describes models that are
incomprehensible by themselves but gain transparency through
explanations created by methods dedicated to understanding
how the model works [5, 21]. Note that the degree to which
a model is inherently interpretable strongly depends on the
model size and choice of input features. A small decision
tree is self-explanatory and thus constitutes an interpretable
model. However, with increasing model size, the tree becomes
less interpretable, forcing the user to resort to explainability
methods in order to obtain insights into the model behavior.
Moreover, if input features do not correspond to human
semantic concepts, the interpretability of the decision process
suffers as a result, no matter how simple the model is. We
differentiate the interpretability of the model at three different
levels, namely at the level of the entire model, individual
components or the training algorithm according to [19]. We
also highlight the integration of additional knowledge as one
interpretable component of the model (cf. Subsection III-A).

Currently favored models, such as neural networks and
random forests, exemplify the need for explainability methods
since even small versions are too complex to be interpretable in
the sense as defined above. This is why they are often referred
to as black-box models. In order to explain the behavior
of a black-box model for individual predictions, there are
three main approaches: First, attribution-based methods were
developed to estimate the respective contribution of each of the
input features to the prediction [23, 24, 25, 26]. In the area of
computer vision, these values are often visualized as heatmaps.
Some of these methods are theoretically grounded in game the-
ory via the concept of Shapley values [27, 28], which quantify
the contribution each player has to an outcome [23, 24]. One
downside of these approaches is that they merely show which
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Fig. 1. An overview on how prior knowledge can be harnessed for the framework of explainable ML. Three different ways of integrating prior
knowledge were identified, as depicted by colored arrows. They determine the structure of this paper, with corresponding methods being discussed in
IML to increase Explainability (Subsection III-A), Informed Explainability Methods (Subsection III-B), and Deriving Knowledge from Explanations

(Subsection III-C).

part of the input the model deemed important but not for which
reasons [29].

The second approach consists of training an interpretable
surrogate model, e.g., a decision tree or a linear model, to
mimic the black-box as closely as possible, including its
errors [30, 31]. As mentioned before, the interpretability of
the surrogate model is itself dependent on its size. The bigger
the surrogate model that is needed to accurately mimic the
complex behavior, the less explainable it will be in the end
and therefore miss its intended use to provide model insights.

The third approach comes from the recent push toward
counterfactual explanations, following literature from social
science, as pointed out by Miller [8]. Miller argues that
humans tend to ask contrastive questions to gain an under-
standing of the underlying decision process behind an external
rationale. Consider as an example a scenario where a credit
scoring model is used to decide whether or not a person
qualifies for a loan. A question that a customer might ask is,
”Why was my loan denied while my neighbor got their loan?”.
The customer hereby expects as an answer the most critical
differences that lead to different predictions. Counterfactual
explanation methods rely on this theory to construct artificial
data points, which are very similar to the data point in question
but lead to a different model prediction [32, 33]. One of the
main challenges is the generation of plausible yet minimally
changed counterfactual examples [33], that allow users to
derive a possible course of action [34].

While all these approaches aim to explain the unknown
inner workings of a complex model, it is often difficult
to judge whether or not they are accurately following the
model’s line of decision or not. Ground truth explainability
data cannot be provided in most scenarios since knowledge
about the decision process of the model is needed, which
is exactly what explainability methods try to uncover. Some
work suggests presenting users with explanations generated
from explainability methods and observe how well they help

users make the initial prediction [35, 36]. However, it is
unclear whether or not an explanation that appears to make
a model more understandable to the user is also the correct
explanation. One way to remedy this conundrum of missing
ground truth data might be to incorporate prior knowledge into
the training and explanation process. By providing the model
with information about how to navigate the path from input
to prediction, it might learn a human-understandable way and
become more interpretable.

B. Informed Machine Learning

The motivations for integrating prior knowledge into the
machine learning pipeline can be manifold. Natural goals
are to improve the model performance or to train with less
data. With trustworthy artificial intelligence becoming more
important [37], another purpose of IML is to ensure knowledge
conformity or to improve the interpretability of a model [17].

In contrast to traditional ML that uses prior knowledge
implicitly, e.g., for feature engineering or selecting hyper-
parameters, IML makes the integration of prior knowledge
more explicit. IML can be defined as learning from a hybrid
information source that consists of data and prior knowledge.
Here, the prior knowledge stems from a data-independent
source, is brought into a formal representation and is explicitly
integrated into the machine learning pipeline.

The taxonomy of IML provides a framework for classifying
its different approaches with respect to the knowledge source,
the knowledge representation, and the integration stage in the
learning pipeline [17]. The authors describe the spectrum of
informed learning in terms of the following building blocks:

1) Knowledge source: Here, knowledge is understood as
information about relations between entities in specific con-
texts. The source can be categorized into three types:

• Scientific knowledge: This knowledge source includes,
e.g., natural sciences and engineering. The knowledge is
usually formalized and empirically validated.



• World knowledge: This knowledge type refers to vision,
linguistics or general knowledge, for example, that a tree
has leaves.

• Expert knowledge: This knowledge type describes the
intuitive knowledge acquired by experts through experi-
ence. It is informal and often implicit.

2) Representation: Knowledge can be formalized using
representations, such as equations, simulations, rules, or
graphs, but it can also be given more informally via human
feedback. Von Rueden et al. [17] found that each knowledge
type has common representation types. For example, scientific
knowledge is often represented as algebraic equations or sim-
ulation results, whereas world knowledge is often represented
as logic rules and knowledge graphs. Expert knowledge is
commonly represented as human feedback or probabilistic
relations.

3) Integration: The representations can be integrated into
one of the four stages of the learning pipeline (cf. Fig. 1):

• Training data: In contrast to the typical way of incor-
porating knowledge via feature engineering, an informed
approach is defined as hybrid by using both the original
data set and an additional, separate knowledge source.

• Hypothesis set: The integration into the hypothesis set
is accomplished through the selection of architecture and
hyperparameter settings.

• Learning algorithm: Through a loss function and appro-
priate regularizer, additional knowledge can be integrated
into the learning algorithm.

• Final hypothesis: Existing knowledge is used to com-
pare, benchmark and post-process the output of a model.

Interpretability and explainability are only considered as
a side effect in the described IML taxonomy. We will now
extend this taxonomy which in turn allows us to identify sep-
arate directions of informed learning for explainable machine
learning models.

III. KNOWLEDGE-DRIVEN EXPLAINABLE ML

As motivated in the introduction, explanations always have
to bridge a communication gap between the model and the
receiver of the explanation. If the explanation fails to com-
municate in concepts intelligible to the receiver, the receiver
will not be able to understand the explanation. Furthermore,
we have noted that purely data-driven explanations put the
responsibility to draw reliable conclusions fully on the user,
thereby limiting the relevant user group to experts. We propose
to address both shortcomings by integrating prior knowl-
edge into the ML pipeline or the explanation, to adapt the
explanation to users and contexts. Based on our literature
search, we identified three main approaches to incorporate
prior knowledge for improving explainable learning systems
(colored arrows in Fig. 1):

1) Informed Machine Learning to increase Explainability
2) Informed Explainability Methods
3) Deriving Knowledge from Explanations
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Fig. 2. In addition to the data set used in the ML setting, prior knowledge
is integrated into the ML pipeline (green arrow).

The first approach (Fig. 1 green arrow, Subsection III-A) is
well-captured by the IML taxonomy. It covers cases where
some form of prior knowledge is available in addition to
data, and which is integrated at some stage of the learning
pipeline. In the works we review in this section, the integrated
knowledge is used to align model components with prior
knowledge. This facilitates model handling for professionals
from the domain, who might not even be ML experts. In
the second approach (Fig. 1 blue arrow, Subsection III-B),
knowledge integration takes place at the explainability method.
We consider this to be an additional component of the usual
ML pipeline, due to the prevalence of post-hoc approaches.
This integration approach offers the largest potential to in-
crease accessibility of explanations for different user groups
in different contexts because it allows for interactions between
users and model explanations. Lastly, we found that many
published works derive additional knowledge from explanation
results (Fig. 1 yellow arrow, Subsection III-C). Similar to prior
knowledge that is available from the start, these newly derived
priors can then be re-integrated at any point of the pipeline.
Approaches in this category are adapted by ML scientists and
developers to debug and improve models. With the latter two
approaches, we go beyond the information flow established in
the IML taxonomy and thus propose an extended framework,
as shown in Fig. 1.

We now discuss the related work that has been published
for all approaches. The inclusion criteria for the papers
were that they use an IML approach and claim improved
explainability. During our investigations, we found that many
published works can be neatly categorized via their knowledge
integration type, i.e., training data, hypothesis set, learning
algorithm, and final hypothesis. Where applicable, we structure
the subsections accordingly.

A. Informed Machine Learning to Increase Explainability

In this category, additional information in the sense of
IML is used in such a way that it not only increases model
performance but also improves explainability. While this im-
provement is not always stated as an explicit objective, we
argue that additional knowledge is oftentimes integrated in
the sense of an individual, interpretable component, therefore
increasing the interpretability of the entire ML pipeline.

a) Training Data: Two approaches in the field of rec-
ommender systems increase interpretability by integrating



additional knowledge, which is understandable for humans,
into the training data for their models. The general task
is to predict the next item(s) a user interacts with, given
an (ordered) set of user-item interactions. Wang et al. [38]
and Ma et al. [39] both first create a single heterogeneous
knowledge graph by connecting the user-item interaction data
with multiple existing knowledge bases (MovieLens-1M +
IMDb and Freebase + DBPedia respectively). Wang et al. [38]
generate recommendations by extracting limited-length user-
item paths from the graph and rating them for plausibility
using a recurrent neural network. Ma et al. [39] compute
sets of rules, where a rule is a sequence of certain types of
edges, and learn a weighting of those rules. Both methods are
argued to be explainable because the algorithms are forced to
reason along the edges of the knowledge graph and produce
a weighting that reflects the contribution of each path or rule
to the decision.

b) Hypothesis Set: We found several applications that
promote the interpretability of the model by using prior
knowledge to inform architectural changes in the ML model.
Two of them are located in the field of biology. Ma and
Zhang [40] encode biological knowledge into the network
in the form of factor graphs, representing either genes or
gene ontology as neurons and abstracting direct influence
to corresponding genes or gene ontologies as edges. They
hereby give semantic meaning to all originally meaningless
neurons and their connections. Such a network, constructed
based on prior knowledge rather than heuristics, is easily
intelligible and therefore more explainable. To learn represen-
tations of single-cell RNA-sequence data, Rybakov et al. [41]
propose an interpretable autoencoder based on a regularized
linear decoder. The autoencoder decomposes variations into
interpretable components using prior knowledge in the form
of annotated feature sets obtained from public databases.
Observed covariates, such as batch or cell type, can be fed
into the encoder-decoder architecture or simply weighted by
a linear model and then introduced into the autoencoder.
As the primary purpose of the method is to explain the
components of variations, introducing prior knowledge enables
more acceptable interpretations.

Prior knowledge in the form of world knowledge improves
ML models for the problems of semantic image understanding
[42] and conversation generation [43]. Chen et al. [42] create
a pipeline that processes the visual cues of an image input as
well as the background knowledge of a guide ontology. The
result is a directed graphical model that constructs possible
relationships between the visible objects. This ML model
becomes more interpretable because all resulting relationships
are verifiable through the ontology. Liu et al. [43] aim to make
the process of conversation generation more transparent by
integrating a factoid knowledge graph into the deep learning
pipeline that is augmented with information from related text
documents. While the knowledge graph provides background
knowledge for an encoder-decoder model, it also makes the
ML model more interpretable, because all graph traversals for
knowledge selection can be retraced.

Chen et al. [44] propose a replacement for batch normaliza-
tion layers, commonly found in neural network architectures,
called concept whitening layers. The data points flowing into
the layer first get decorrelated using a whitening operation
and then aligned in the latent space to a fixed number
of predefined concepts. As an example, the authors train a
convolutional neural network (CNN) for image classification.
After swapping all batch normalization layers with concept
whitening layers, they use a separate data set, labeled with
human-understandable concepts such as aeroplane and table,
to fine-tune the alignment of the training data to these con-
cepts. This alignment to human-interpretable concepts helps
not only in debugging the training process, i.e., discovering
misalignment between similar concepts, but also increases the
understandability of the decision process because it allows
for breaking down the decision to a mixture of known and
understandable concepts.

c) Learning Algorithm: Several applications use knowl-
edge from the medical domain to apply regularizations to
the learning algorithm. The knowledge graphs used by these
applications are ontologies, such as ICD-9 or SNOMED-
CT, transformed into a tree structure. Choi et al. [45] and a
subsequent extension proposed by Ma et al. [46] predict future
diseases of a patient based on the diagnosis history of that
patient. They compute a vector embedding of the ontology and
derive a feature representation of the inputs by accumulating
relevant parts of the ontology embedding via an attention
mechanism which can be seen as an explanation capability.
Jiang et al. [47] use logistic regression to infer the readmission
probability of a patient after a hospital stay from their medical
history. A distance measure over the ontology is included
as a regularization factor in the loss function that penalizes
biases toward a certain part of the ontology. Yan et al. [48]
formulate a joint learning task of multi-label assignment to
CT images and retrieve images similar to the input from a
database. The retrieved images serve as explanations. Mutually
exclusive label combinations are extracted from the ontology
and this information is used to regularize the loss function of
the retrieval task, this way aligning the explanations closer to
the ontology.

Another two approaches in the domain of computer vi-
sion integrate additional knowledge as constraints in the ML
pipeline. Donadello et al. [49] present Logical Tensor Net-
works, a neural network for semantic image interpretation
constrained by first-order fuzzy logic. These logic rules are
derived from the comprehensible WordNet ontology [50],
describing part-of relations which are used to exclude classifi-
cations showing unrealistic relations like, e.g., tail as a part of
table. For the problem of part localization, Zhang et al. [51]
present an approach that leverages human feedback to improve
a ML model. The model consists of an And-Or graph that
is based on a pre-trained CNN. This graph disentangles the
hierarchical relationship between semantic image parts (top
level nodes) and single activated CNN units (terminal nodes).
In a second step, they visualize the network’s activations
using up-convolutional networks and evaluate them via human



feedback. This additional information improves the And-Or
graph by excluding activations that do not contribute to the
target semantic part.

d) Final Hypothesis: The following applications use
external, human-understandable knowledge to perform plau-
sibility checks on the results of the ML models. Doran et al.
[12] make a conceptual proposition to extend an already exist-
ing, explainable model by a post-processing step that checks
the explanation against a knowledge base for plausibility. A
rudimentary realization of this idea is to improve the output
of a multi-object detector [52]. First, the authors define a
number of categories to classify the objects in the knowledge
base. Subsequently, they compute a ranking that describes
how closely related two categories are. Finally, they refine the
output of the multi-object detector by collecting information
about which categories are detected and artificially increasing
the certainty score for objects that belong to related categories.

Kim et al. [22] propose to utilize an external data set of
predefined concepts, for example in the form of images, to
test how much the networks latent representations align with
these concepts. To do so, they take the latent representation
of these concepts together with representations of random
samples and train a linear classifier to distinguish between
concept-related and random vectors. Using the normal to the
decision boundary, they can quantify how much a data point
from the original training data set aligns with the concepts.
This approach is similar to Chen et al. [44], in that it improves
the interpretability of the model by measuring the alignment
of data points to human-understandable concepts in the model.
Whereas Chen et al. [44] use the external concept data set to
fine-tune the network to ensure the alignment, Kim et al. [22]
measure the alignment to the concepts after training the model
in the conventional way.

e) Section Summary: The reviewed papers show that the
integration of knowledge can improve explanation capabilities.
For each stage in the pipeline, the explainability can be
improved by enforcing alignment to human understandable
concepts. For the training data, the data themselves are con-
nected to semantic knowledge, e.g., in the form of knowledge
graphs. In the stages of hypothesis set and learning algorithm,
the model structure or representations are aligned with prior
knowledge which brings the internals of a model closer
to comprehensible concepts. In the final hypothesis stage,
the prior knowledge enables a plausibility check for model
explanations.

B. Informed Explainability Methods

The research work presented so far integrates knowledge
into the learning pipeline. Moving onward, we now investigate
cases in which prior knowledge helps when designing and
executing explainability mechanisms, which we purposefully
do not consider as a part of the pipeline (cf. Fig. 1). This is an
important and unique way of integrating knowledge into ML,
that extends the IML taxonomy by adding the explainability
method as a new integration type. All methods in this section
are post-hoc methods which we subdivide further into two
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Fig. 3. Prior knowledge is integrated into the explainability method (blue
arrow).

categories: formalized priors for explanations and interactive
explanations.

a) Formalized Priors for Explanations: Generating coun-
terfactuals is one direction of providing example-based expla-
nations [53]. While many approaches search counterfactuals
for the original instances based on distance measures, Mothilal
et al. [54] narrow down the search space via user-defined
causality constraints. They formalize their priors in the form of
box constraints on feasible ranges. Another work [55] attempts
to assure the causal plausibility of counterfactuals by incor-
porating a penalty in the optimization process for infeasible
values. For causal relationships that cannot be expressed with
formulas, they train a variational autoencoder that generates
counterfactuals and evaluates their quality based on human
feedback. Both approaches promote the causal plausibility of
generated counterfactuals by introducing prior knowledge into
optimization in the form of algebraic constraints.

Another post-hoc explainability method is activation max-
imization (AM). It attempts to discover the ideal input dis-
tribution of a given class (global explanation) by optimizing
the gradients of the inputs while freezing all parameters of
the networks. However, AM with no priors tends to generate
meaningless mosaics in high frequency, which are not human-
recognizable. Two approaches [56, 57] employ ℓ2-norm reg-
ularization to reduce noise and refine larger structures in the
resulting images. Mahendran and Vedaldi [58] constrain the
total variation of the explanation to prior images, thus, provid-
ing a smoother output. Moreover, Yosinski et al. [56] penalize
nonsensical high-frequency pixels by applying Gaussian blur
kernels to activations before each optimization step. All of the
methods detailed above generate more human-understandable
explanations by incorporating additional algebraic restrictions
into the optimizers.

Shams et al. [59] propose a methodology which extracts
conditional rules from deep neural networks and combines
them with other data-driven and knowledge-driven methods.
Experts are able to directly validate and calibrate the extracted
rules with their domain knowledge to yield more precise and
acceptable explanations.

Another approach combines LIME (Local Interpretable
Model-Agnostic Explanations) [26] with Inductive Logic Pro-
gramming [60] to obtain verbal explanations for image classi-
fication [61]. Extracting symbolic rules from images enables



a different perceptual modality and more expressive explana-
tions, such as spatial relations of image parts.

b) Interactive Explanations: The IML taxonomy con-
siders human feedback as a valid representation type, with
corresponding sources usually being world or expert knowl-
edge. This is rooted in the success of incorporating human
interaction within learning processes. As an example, the
framework of coactive learning [62] allows users to correct
and thus improve model predictions via direct feedback. Work
has also been done on making the human interaction robust
against manipulation, for example in the medical domain [63].
Other approaches use visual analytics to analyze and possibly
obtain information on how to refine trained models [64, 65].

Recently, human interaction was identified to possibly ben-
efit the explainability of ML systems [66]. This is based
on the observation that, in communication between humans,
personalized explanations or even explanation dialogues result
in better understanding and higher acceptance [8]. Accord-
ingly, enabling users to interact with provided explanations
can potentially fulfill several explainability desiderata, i.e.,
requirements for explaining methods as identified by fact
sheets [67].

Different works have successfully developed ML systems
that provide interactive explanations for their decisions. The
What-If Tool [68] allows its users to interactively analyze a
model and to find explanations via feature importance. Krause
et al. [69] also allow for the interactive exploration of model
decisions via underlying feature importance. Moreover, they
offer the option of tweaking feature values in order to see
how it affects the predictions. Customization of explanations
has also been successfully implemented in the MUSE (Model
Understanding through Subspace Explanations) framework
[70]. It allows users to interactively choose features of in-
terest, and then explore how the model behaves in resulting
subspaces. Another interactive explanation system is Glass-
Box [71], which offers explanation dialogues via a voice-
enabled virtual assistant. Schneider and Handali [72] proposed
a conceptualization for methods that shall provide personalized
explanations.

Besides showing the mere feasibility of interactive explain-
able ML, those works also evaluated the impact on users. The
users seemed to obtain a better and also faster understanding
of the underlying model logic [70]. By using interactive tools,
users were able to improve the predictive model quality [69].
Generally, users were satisfied with the received interactive
explanations, but they criticized the lack of arguability [66].

c) Section Summary: Informed explainability methods
present a way to customize explanations to concrete applica-
tions and users. Formalized priors introduce desired properties
into an explanation, such as causal plausibility or noise reduc-
tion. Interactive explanations are primarily implemented with
user interfaces that allow for personalized explanations via the
interaction between user and machine.
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Fig. 4. From the explanations of an explainability model, knowledge is
derived, formalized and subsequently incorporated into the ML pipeline
(yellow arrow).

C. Deriving Knowledge from Explanations

Explainability methods often detect flaws in ML models,
and as such, inform about necessary improvements. One
prominent use case is to remedy the Clever Hans phenomenon
[73] which refers to some models latching onto spurious
correlations in the data set, instead of a known, correct
relation that is present in the data and obvious to humans.
As an example, the authors show an image containing a
photographer’s watermark in the bottom left corner on most
images featuring a horse. The model picked up on the artifact
and focused its decision on the watermark instead of the horse.

We have found that many approaches suggest explicit ways
of formalizing and incorporating feedback on explanations that
go beyond simply showing the necessity of model improve-
ment. In essence, knowledge is derived from the explainability
component of the model and is subsequently integrated into
the learning pipeline (cf. Fig. 4). We structure our review
according to the integration of this new knowledge into
different steps in the ML pipeline.

a) Training Data: Some approaches use feedback on
explanations for revising and improving the corpus of available
training data in order to inform the learning system. This is
usually achieved with a human-in-the-loop, who inspects vi-
sual explanations for data instances, revises them if necessary,
and thus adds more training data [74]. In terms of IML, this
can be understood as obtaining prior knowledge from an expert
user (or from world knowledge) at the final hypothesis which
is represented as human interaction. This knowledge is then
used to improve the training data for the next learning iteration.

Schramowski et al. [75] and Teso and Kersting [76] generate
additional training data using feedback on explanations. If an
expert decides that the explanation of the model is incorrect,
the respective part of the image is used to create counterex-
amples. Counterexamples are generated by randomizing or
otherwise altering the parts an expert identified as unimportant.
Each counterexample, however, retains the label of the original
data point, encouraging the model to unlearn the unwanted
correlation. Instead of adding new data points, the so-called
Explanatory Debugging [77] lets the user correct mislabelled
data points in an interactive way during training.

Adilova et al. [78] use expert feedback to help a model
learn from unlabeled data in the context of relation extraction



from text data. Examples of relations are son-of or country-of-
birth. The model is first trained to extract the relations itself
using distant supervision. Afterwards, tri-grams are extracted
as explanations of the model behavior using a version of
relevance propagation [79]. An expert is presented with the
tri-grams and is asked to decide if they are representative of
the relation or not. If they are not, then sentences in the data
set containing the tri-gram will be filtered out and the model
is retrained.

b) Learning Algorithm: The feature-based feedback from
the Explanatory Debugging approach [77] is incorporated as
a Bayesian prior, meaning that human feedback at the final
hypothesis is transformed into a probabilistic representation,
which is then integrated into the learning algorithm.

We found a line of research focusing on the integration of
explanations in the learning algorithm by adding a regularizing
term to a model’s loss function. In addition to the training
loss between the model’s prediction and the ground truth
label, an additional loss between the model’s explanation for
each prediction and a given explanation is added and thus
simultaneously minimized.

To the best of our knowledge, this approach was popularized
by Ross et al. [80], who gather binary annotation masks from
experts, indicating parts of the input the model should not
focus on. These annotations are then used to penalize the
gradient of the prediction w.r.t. to specific inputs which are
nonzero in the annotation mask. This forces the model to
minimize the gradients at the selected locations as part of the
training algorithm, which should then lead to the model being
right for the right reason [75, 80].

Rieger et al. [81] use a decomposition-based approach to
measure the importance of certain inputs to a model’s decision.
Using expert annotations similar to Ross et al. [80], they
force certain inputs to be regularized to have zero impact on
the model. They test their approach on skin cancer screening
images by enforcing that colorful patches next to potentially
cancerous skin lesions should be ignored since they do not
inform about the type of lesion and only occur in one of
the classes. In evaluating their method, they found that the
model significantly outperformed the approach of Ross et al.
[80] after being forced to ignore the colorful patches. A
similar approach was proposed by Selvaraju et al. [82], in
which the authors evaluate the effect of human intervention
on visual explanations in the application domains of visual
question answering and image captioning. They found, after
incorporating the changed explanations, that their model was
not only able to correctly highlight the images responsible for
the correct answer or image caption but also outperformed
other state-of-the-art question answering systems. In addition
to visual feedback, Stammer et al. [29] offer the user the
opportunity to provide semantic feedback in the form of
relational functions. Similar to Rieger et al. [81], Erion et al.
[83] use attribution priors to optimize for desired explanation
qualities, such as smoothness and sparsity, using the attribution
method expected gradients. With this method, assumptions,
e.g., that neighboring pixels should have a similar effect on

the output, can be integrated into the model.
Balayan et al. [84] provide a neural network-based frame-

work that jointly makes predictions as well as associated
explanations. Subsequently, the output is validated by human
experts and the model is improved by adjusting its parameters
through backpropagation. Using ground truth data, the authors
claim that human feedback increases the prediction quality
of the explanations by over 13%. For a natural language
inference task, Camburu et al. [85] incorporate explanations of
textual entailment, i.e., whether a premise sentence entails a
hypothesis sentence, into the training process using a negative
log-likelihood for classification and an explanation loss. Fur-
thermore, a feature attribution method for text classification
adds a loss with the goal to mitigate unintended bias in the
text [86].

c) Section Summary: To summarize, most approaches
we found use a modified loss function, which takes into
account feedback on the model’s explanations, to regularize
the model’s behavior toward the desired outcome.

IV. DISCUSSION AND OUTLOOK

Table I gives an overview of all papers presented in Sec-
tion III and advances their categorization according to the
IML taxonomy by considering the knowledge representation
type. We want to point out that the ”Informed Explainability
Methods” in Subsection III-B constitute a new integration
stage. This results in an additional column solely populated by
publications from that section. The table shows a concentration
of work using additional knowledge represented either as
knowledge graphs or as human feedback. We did not find
any work using simulation results or differential equations.
Also, only two papers we identified deploy logic rules as a
representation type.

We now assess the strengths and limitations of integrating
prior knowledge for explainability, both from a general per-
spective and for each of the three presented strands separately.

a) General Considerations: We established three strands
for integrating prior knowledge for explainable machine learn-
ing. They can be distinguished with regards to how prior
knowledge is available and at which point it is integrated. Prior
knowledge is either given as independent data or it is derived
from an explainability method. In the first case, the knowledge
is then integrated into either the machine learning pipeline or
the explainability method. In the latter, the knowledge is only
integrated into the machine learning pipeline.

We hypothesize that the prevalence of knowledge graphs
and human feedback as representation types is due to their in-
herent intelligibility. Knowledge graphs allow for representing
scientific as well as world knowledge while their benefit lies in
the structured representation of world knowledge. A compre-
hensive review of knowledge graphs as tools for explainable
machine learning is given in [18]. Human feedback, on the
other hand, is the most accessible knowledge representation
for expert knowledge, a knowledge type that is usually more
intuitive and less formal. While this reasoning seems plausible
to us, we cannot exclude the possibility of falling victim to a



TABLE I
FORMS OF KNOWLEDGE INTEGRATION; COLORS INDICATE HOW EXPLAINABILITY IS ADDRESSED OR TAKEN INTO ACCOUNT:

IML IS USED TO INCREASE EXPLAINABILITY (SUBSECTION III-A), KNOWLEDGE IS USED TO ENHANCE THE EXPLAINABILITY METHOD

(SUBSECTION III-B) OR EXPLAINABILITY IS USED TO DERIVE AND INTEGRATE KNOWLEDGE (SUBSECTION III-C).

Training Data Hypothesis Set Learning Algorithm Final Hypothesis Explainability Method

Knowledge Graphs
Wang et al. (2019) [38]

Ma et al. (2019) [39]

Ma and Zhang (2019) [40]

Chen et al. (2012) [42]

Liu et al. (2019) [43]

Choi et al. (2017) [45]

Ma et al. (2018) [46]

Jiang et al. (2019) [47]

Yan et al. (2019) [48]

Zhang et al. (2017) [51]

Erion et al. (2021) [83]

Doran et al. (2017) [12]

Pommellet and Lécué (2019) [52]

Logic Rules Donadello et al. (2017) [49] Rabold et al. (2019) [61]

Algebraic Equations Rybakov et al. (2020) [41]
Erion et al. (2021) [83]

Rieger et al. (2020) [81]
Kim et al. (2018) [22]

Mothilal et al. (2020) [54]

Mahajan et al. (2019) [55]

Probabilistic Relations Chen et al. (2020) [44] Erion et al. (2021) [83]

Human Feedback

Baur et al. (2020) [74]

Schramowski et al. (2020) [75]

Teso and Kersting (2019) [76]

Camburu et al. (2018) [85]

Kulesza et al. (2015) [77]

Ross et al. (2017) [80]

Rieger et al. (2020) [81]

Selvaraju et al. (2019) [82]

Camburu et al. (2018) [85]

Liu and Avci (2019) [86]

Kulesza et al. (2015) [77]

Balayan et al. (2020) [84]

Shams et al. (2021) [59]

Sokol and Flach (2020) [66]

Krause et al. (2016) [69]

Wexler et al. (2020) [68]

Lakkaraju et al. (2019) [70]

Sokol and Flach (2018) [71]

Schneider and Handali (2019) [72]

selection bias here. Furthermore, the low number of papers
using logical expressions was surprising since logic rules
are inherently expressive [87]. We found that many neuro-
symbolic approaches are not informed in a sense that they
first use an existing model and then try to improve it using
additional knowledge. Instead, they aim to provide a concept
that combines logic and connectionism (for an overview of
that field we refer to [88]).

The key strength of integrating prior knowledge for explain-
able ML is its ability to increase accessibility of explanations.
Knowledge that is already available can be utilized to give
context and to address user needs. In addition, explanations
can be used to inform the learning system.

Recall that some reasons for why we need explainable
machine learning are verification of the system, compliance to
legislation, improvement of the system, and learning from the
system [20]. In the first two cases, namely verification of the
system and compliance to legislation, an auditor assesses the
behavior of the system. The auditor has to make an informed
decision whether the system complies with all requirements
without necessarily being an expert on the underlying tech-
nology. Prior knowledge can serve as a bridge to equip the
auditor with the required context to probe the system in a
meaningful manner and come to a sound verdict. Regarding
the improvement of ML systems, current explanation methods
already help developers to detect flaws like the Clever Hans
phenomenon. Given the present-day need for explanation,
task performance is not the only objective that needs to be
considered when designing a new system. Although secondary
objectives, like fairness or transparency, are elusive concepts
[89], integrating prior knowledge could be a way to approach

this problem (c.f. [66]). Consider this: We do not train our
models with fairness or explainability in mind, yet we fault
them for not demonstrating these traits inherently. In order to
ensure fairness and explainability, we need to clearly capture
these in the learning process. If there exists knowledge about,
e.g., undesired racial bias in a given model, we can use that
information for explicit regularization such that the model
treats different groups equally [81].

A prerequisite for informed machine learning is the avail-
ability of prior knowledge. While not all domains have easy
access to prior knowledge, a knowledge source that is not nec-
essarily domain-specific may still be eligible for explainability.
It is important to create awareness of existing knowledge bases
and also to consider the different ways a knowledge source can
be used. For the latter point, our work illustrates a variety of
integration opportunities.

Further research is needed to capture the different effects of
incorporating prior knowledge on explainability.

The absence of methods that integrate differential equations
and simulations offers another starting point for future work.
Both representation types are close to the field of physics,
where informed machine learning is well-established [90], but
the effect on explainability is less investigated. A possible
direction is given by Bikmukhametov and Jäschke [91] who
incorporate first principles models and investigate their effect
on the explainability.

b) Informed Machine Learning to Increase Explainabil-
ity: In Subsection III-A, prior knowledge is explicitly inte-
grated into the machine learning pipeline to also improve
model explainability. While we have reviewed research in
Subsection III-A that is exemplary for each integration type,



we can see that most approaches use the learning algorithm
stage to integrate additional information. Possibly, because
the integration as regularization enables using existing model
architectures and is less labor-intensive.

The benefit of this approach is that it leverages existing
knowledge and makes machine learning models more compre-
hensible by integrating the knowledge through an interpretable
component into the machine learning pipeline. Choi et al.
[45] demonstrate a correlation between introducing the prior
knowledge source and achieving more concise visualizations
of embeddings as compared to competitors.

Again, the way in which the explanation quality is measured
is often not addressed or evaluated. From the papers that
evaluated explainability in some regard there was no clear
consensus on what type of measure is preferable. We did not
find a common understanding of the degree to which a method
improves interpretability or explainability. In this sense, it is
not straightforward to determine whether certain knowledge
representations or integration types are especially effective.
Reasons for this are the dependency on the application context
and the lack of formalism of interpretability.

There are many papers that can be categorized into IML
which do not necessarily state it as an explicit goal to make
their models more explainable. Explainability should not be
treated as an afterthought but has to already be considered in
the design phase.

c) Informed Explainability Methods: In Subsection III-B,
prior knowledge is incorporated into the explainability method.
We expanded on the informed machine learning taxonomy by
introducing the explainability method as a new knowledge
integration stage. A method qualifies for this category if it
integrates an independent knowledge source in addition to an
existing algorithm which provides explanations.

A distinction can be made between interactive approaches
and formalized priors. The benefit of the interactive approach
is that the user can give direct feedback on an explanation.
This case can be seen as a communication module between
the system and the user. For the formalized priors, knowledge
is integrated once to improve the explainability component
directly. In both cases, incorporating additional knowledge into
the explainability method allows for the accommodation of
user needs.

We emphasize that post-hoc methods should be considered
with caution. Since explanations are obtained by approxima-
tions, it cannot be ensured that the explanations are faithful
to the model. The integration of a comprehensible knowledge
source does not change that and should not lead to a false
sense of security. Especially in high-stake scenarios, inherently
interpretable models should be preferred [21].

d) Deriving Knowledge from Explainable Results: In
Subsection III-C, knowledge is derived from explainability
methods and subsequently integrated into the ML pipeline.

The common way to improve a model is an iterative trial-
and-error approach, e.g., feature engineering, in which the
knowledge that is gained is rather implicit. In contrast, the
reviewed methods make explicit use of explainability methods

to generate insights that are formalized and then used to inform
the model in the next iteration. This means that explainability
is a precursor for informed machine learning. Consequently,
this could give rise to an improved methodology where the
formalization enables a more explicit way to elaborate on the
reasoning for certain design choices. This can help to decouple
seemingly arbitrary decisions made in a specific context to
generate insights on a broader scale.

We found that very few methods incorporate the gained
knowledge from the explanations into, for example, the model
architecture, suggesting an opportunity for future work. For
future research in this domain, we refer to recent work
[92] which highlights data sets for explainability research in
Natural Language Processing.

e) Open research directions: To conclude this section we
summarize the general directions for future work.

Knowledge formalization: Transforming intuitive knowledge
in the form of human feedback and fuzzy expert knowledge
to formal knowledge representations. In Subsection III-A we
saw a large body of work using prior knowledge to align parts
of the ML pipeline with human priors. General knowledge is
used to transform and enrich training data. Domain specific
knowledge is used to constrain the hypothesis set and adapt the
learning algorithm. These techniques require prior knowledge
to be formalized, e.g. as mathematical criteria or knowledge
graphs. Subsection III-C shows another possible way with the
encoding of expert knowledge in annotation masks. Analo-
gous to research dedicated to produce high quality data sets,
research with the explicit goal to produce domain and task
specific knowledge resources is required [93]. Subsequent
indexing and systematization of these resources will be needed
to make them accessible and thus encourage their use during
the development of new and more interpretable systems.

Making implicit development processes explicit through
formalization of applied priors to facilitate development and
adaptability of future research. This is closely related to the
prior point but we want to highlight its relevance to the ML
community. Parameter tuning and model choice, especially in
deep learning, often is an informal and under-reported process.
Approaches discussed in Subsection III-C, where researchers
and developers use insights obtained from explanations to
improve or debug a model, can be seen as an informed search.
This could be a way to give more substantial justification for
model and parameter choices than to just report an improve-
ment in accuracy.

Developing Informed Explainability Methods: This integra-
tion stage is of special interest in current times, where opaque
models are the standard. Not only can it be applied to exist-
ing models but the research body of post-hoc explainability
already offers a versatile set of tools. As discussed before,
extra care has to be taken to ensure faithfulness of post-hoc
explanations. We think that for Informed Explainability Meth-
ods this problem is exacerbated. The additional information
should increase accessibility of the explanation but should not
be used deceptively to make the model appear more plausible.
To ensure that accessibility and plausibility do not come at



the cost of decreased faithfulness, standardized evaluation
procedures are mandatory that need yet to be established.
Going beyond the notion of post-hoc methods, Informed
Explainability Methods can be used to describe methods to
personalize explanations to individual user needs. This could
mean to provide a user with certain additional information they
need in order to achieve comprehension. That would require
approaches to model user knowledge as well as access to
resources that describe how to adapt the present explanation
accordingly. Adaptation to user needs could also mean changes
to the UI, for example, based on technological literacy of the
user or special needs regarding modality. The challenges here
again come down to formalization of the necessary knowledge
but also extend to research in Human Computer Interaction.

V. CONCLUSION

Explainability is an essential component to bring machine
learning models to the level of being versatile and applica-
ble. Most ML approaches are data-constrained and can only
provide explanations stemming from the information in the
training data. Hence, we propose to harness prior knowledge,
such as logical rules or knowledge graphs, with the goal of
improving explainability. In this paper, we presented three
approaches to integrate prior knowledge into the ML pipeline
and into the explainability component. The three approaches
can be distinguished between the integration method and how
prior knowledge is obtained: Prior knowledge is available
independently of data or pipeline and is (1) incorporated into
the ML pipeline or (2) into the explainability method. Prior
knowledge can also be (3) derived from model explanations,
formalized and then incorporated into the pipeline. With this,
we have created a structure that serves for orientation. Further
research is needed to formalize and measure to what extent
knowledge integration improves explainability.
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