Extending Graph Neural Networks with Global Features

Dragos-Andrei Brasoveanu, Fabian Jogl, Pascal Welke, Maximilian Thiessen

What We Do

- We enhance message passing graph neural networks (MPNNs) by incorporating expressive global graph features
- Global properties like topological indices have been important to chemoinformatics but have been overlooked by the GNN community
- Focus on features based on node degrees, connectivity, distances, or spectral properties

MPNNs cannot distinguish these two graphs, but graph features can (Wiener index, Hosoya index, independence number, maximum matching)

Global Features

Less expressive than MPNNs:

- Circuit rank: #edges which make graph acyclic wh
- Spectral radius: largest eigenvalue of the adjacend
- Zagreb indices:
 - M_1 : sum of squares of the degrees of the nodes
 - M₂: sum of products of the degrees of pairs of adjacent nodes

More expressive than MPNNs:

- Wiener index: sum of lengths of all pairwise short
- Maximum matching: biggest set of edges with no
- Hosoya index: number of matchings in a graph
- Independence number: biggest set of non-neighbor
- 2nd smallest Laplacian eigenvalue: measures connectivity

Experiments

• Evaluate whether global graph feature can improve predictive performance of different GNNs (GIN, GCN, CWN) on molecular benchmark datasets

- Evaluation metrics used:

 - ZINC: mean absolute error (MAE) ↓ ogbg-molhiv: area under the curve (ROC-AUC) ↑ QM9: mean absolute error (MAE) ↓

ZINC

	No feature (base case)	Wiener index
GIN	0.185	0.177
GCN	0.217	0.206
CWN	0.126	0.103

QM9

		No feature (base case)	Wiener index
	GIN	0.0609	0.0598
nen removed cy matrix	GCN	0.0768	0.0749

ogbg-molhiv

		No feature (base case)	Wiener index	Zagreb M ₂	Constant (1's)
est paths common vertices	GIN	0.7674	0.7662	<u>0.7761</u>	0.7614
oring vertices	CWN	0.7838	0.7895	<u>0.7983</u>	0.7912

Architecture

- global graph features
- Train GNN without global features
- Finetune GNN with global features

Constant (1's)		
0.182		
0.213		
0.122		

All features Constant (1's) 0.0604 <u>0.0576</u> 0.0765 <u>0.0708</u>

G

Figure 1: We concatenate global graph features to the output of the graph pooling layer after multiple GNN layers.

Conclusion

- predictive performance

Paper

• Concatenate the learned graph embedding of a GNN with our

• Global graph features are underrated in the GNN community • Fine-tuning GNNs with global graph features can boost

