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How do kernels compare graphs?

Goal: Can we define something like 〈G1,G2〉?
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We focus on Random Walk kernels
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Random Walk (Reproducing) Kernels [Gärtner et al., 2003]
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Goal: Count graph walks

But: in 2 graphs?

• Assume vertex alignment
e.g.:a≡1, b≡2, c≡3, d≡4

• Create alignment graph
• Walk in alignment graph

e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good
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G1
1 2 3

4

# 1-step walks from 1, 3?
0
2
0
1


︸︷︷︸

x1

=


0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0


︸ ︷︷ ︸

A


1
0
1
0


︸︷︷︸

x0

#k-step walks from x0?
xk = Akx0

Goal: Count graph walks

But: in 2 graphs?

• Assume vertex alignment
e.g.:a≡1, b≡2, c≡3, d≡4

• Create alignment graph
• Walk in alignment graph

e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3



Random Walk (Reproducing) Kernels [Gärtner et al., 2003]
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Are all vertex alignments equally good?

• Dissimilar vertices can be noisy
• Do not contribute to similarity

=⇒ Only match similar vertices

Labeled vertices

HO

H
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O
vs

3 same label⇒ similar vertices
7 G2 has no O. What now?
7 How close is C to H?

Unlabeled graphs

3 many similarity measures
7 not always clear or easy

We seek a vertex partitioning
• structurally aware
• efficient to compute
• defines partition similarity

We propose to use
=⇒ core decomposition
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Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example
H(0)

Definition (vertex
coreness)

κ(u) := max
u∈H(k)

k

Decomposition: κ : V → N

• k-core vertices have similar structure [Shin et al., 2016]
• Needs only O(n). [Batagelj and Zaversnik, 2003]
• Intuitive comparison between labels
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Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers ⇐⇒ similar structure
alignment similarity from label kernel

Depending on δ:

• δ =∞ vanilla RW
too loose

• δ = 0 [Gärtner et al., 2003]
too strict

• δ ∈ R+ SUSAN
adaptive! e.g.: 0,0.5,1,1.5,2
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G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Use kernel over Z
kδ(l , l ′) := max

(
0, 1− |l−l ′|

δ+1

)
where δ: bounded support

Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers ⇐⇒ similar structure
alignment similarity from label kernel

Depending on δ:
• δ =∞ vanilla RW

too loose
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• δ = 0 [Gärtner et al., 2003]

too strict
• δ ∈ R+ SUSAN

adaptive! e.g.: 0,0.5,1,1.5,2
6



Random Walk (Reproducing) Kernels [Gärtner et al., 2003]
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Computing the Kernel II

Finally: sum # common walks:
• of any # steps (with weight µn)

• from each vertex to every other

k(G1,G2) = e>
∞∑

n=0
µnAn

×e︸ ︷︷ ︸

B

Practical weights µ give:

• Geometric: Bg = (I − λA×)−1e

Conjugate Gradient

• Exponential: Be = exp(A×)e

[Al-Mohy and Higham, 2011]

=⇒ computable as matrix vector (MV) operations with A×

But: How do we compute the MV operations efficiently?
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Computing the kernel II: Efficiently

To compute SUSAN efficiently

• we decompose the contribution of each graph
• this reveals a block structure
• groupping the vertices of equal coreness
• exploit the bounded support
• and reduce computational complexity.

Lemma
The MV operator for SUSAN with bandwidth δ is computable as

A×x = T� (A′′(T� X)A′>)
for T block banded with constant blocks and bandwidth δ, time

O
(
(δ + 1)(n′ + n′′)b2)

for b the largest core size and n′, n′′ the vertex numbers of G ′,G ′′.

8
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Conclusion

We study H(0)

H(1)

H(2)

H(3)

H(4)• random walk graph kernels
• weighted vertex alignments

We propose

• coreness as structurally-aware vertex labels
• induce intuitive vertex similarity
• bounded support kernel over coreness

With our work

• close the gap between loose and strict alignment constraints
• competitive classification accuracy for certain datasets
• efficient iterative scheme for practical variants
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