SUSAN: The Structural Similarity Random Walk Kernel

Janis Kalofolias, Pascal Welke, Jilles Vreeken

Applications

Standard Tools

Applications

Classification, Regression, Clustering, Dim. Reduction Machine learning methods

Standard Tools

Applications

Classification, Regression, Clustering, Dim. Reduction Machine learning methods

Standard Tools

SVM, Logistic, K-Means, PCR

Applications

Classification, Regression, Clustering, Dim. Reduction

Machine learning methods

Standard Tools

SVM, Logistic, K-Means, PCR

Can we apply standard tools on graphs?

Applications

Classification, Regression, Clustering, Dim. Reduction

Non-vectorial data

Standard Tools

SVM, Logistic, K-Means, PCR

Need vector data

Can we apply standard tools on graphs?

Applications

Classification, Regression, Clustering, Dim. Reduction

Non-vectorial data

Standard Tools

SVM, Logistic, K-Means, PCR

Need vector data

Can we apply standard tools on graphs?

Applications

Classification, Regression, Clustering, Dim. Reduction

Non-vectorial data

Standard Tools

SVM, Logistic, K-Means, PCR

Need vector data

Can we apply standard tools on graphs?

Applications

Classification, Regression, Clustering, Dim. Reduction

Non-vectorial data

Standard Tools

SVM, Logistic, K-Means, PCR

Need vector data

Can we apply standard tools on graphs? \implies Use a kernel on graphs

Goal: Can we define something like $\langle G_1, G_2 \rangle$?

Goal: Can we define something like $\langle G_1, G_2 \rangle$?

Kernels define a space $\mathcal H$ with $\langle\cdot,\cdot\rangle$ and mapping function ϕ

Goal: Can we define something like $\langle G_1, G_2 \rangle$?

Kernels define a space $\mathcal H$ with $\langle\cdot,\cdot\rangle$ and mapping function ϕ

Goal: Can we define something like $\langle G_1, G_2 \rangle$?

Kernels define a space $\mathcal H$ with $\langle\cdot,\cdot\rangle$ and mapping function ϕ

Goal: Can we define something like $\langle G_1, G_2 \rangle$?

Kernels define a space $\mathcal H$ with $\langle\cdot,\cdot\rangle$ and mapping function ϕ

 $\implies \text{Use as graph similarity} $$G_1 , $$G_2$$

Goal: Can we define something like $\langle G_1, G_2 \rangle$?

Kernels define a space $\mathcal H$ with $\langle\cdot,\cdot\rangle$ and mapping function ϕ

 \implies Use as graph similarity $\phi(G_1), \phi(G_2)$

Goal: Can we define something like $\langle G_1, G_2 \rangle$?

Kernels define a space $\mathcal H$ with $\langle\cdot,\cdot\rangle$ and mapping function ϕ

 $\implies \text{Use as graph similarity} \\ \left\langle \phi(G_1), \phi(G_2) \right\rangle_{\mathcal{H}}$

Goal: Can we define something like $\langle G_1, G_2 \rangle$?

Kernels define a space $\mathcal H$ with $\langle\cdot,\cdot\rangle$ and mapping function ϕ

 $\implies \text{Use as graph similarity} \\ \frac{k(G_1, G_2)}{k(G_1)} := \left\langle \phi(G_1), \phi(G_2) \right\rangle_{\mathcal{H}}$

Goal: Can we define something like $\langle G_1, G_2 \rangle$?

Kernels define a space $\mathcal H$ with $\langle\cdot,\cdot\rangle$ and mapping function ϕ

 $\implies \text{Use as graph similarity} \\ k(G_1, G_2) \coloneqq \left\langle \phi(G_1), \phi(G_2) \right\rangle_{\mathcal{H}}$

Goal: Can we define something like $\langle G_1, G_2 \rangle$?

Kernels define a space $\mathcal H$ with $\langle\cdot,\cdot\rangle$ and mapping function ϕ

We focus on Random Walk kernels

[Gärtner et al., 2003]

G G

[Gärtner et al., 2003]

ex: 3-step walk: (1, 2, 3, 4)

G

[Gärtner et al., 2003]

ex: 3-step walk: (1, 2, 3, 4)

[Gärtner et al., 2003]

🕑 G

[Gärtner et al., 2003]

[Gärtner et al., 2003]

🕑 Goa

[Gärtner et al., 2003]

[Gärtner et al., 2003]

Goal: Count graph walks

1-step walks from 1, 3?

[Gärtner et al., 2003]

Goal: Count graph walks

But: in 2 graphs?

[Gärtner et al., 2003]

Goal: Count common walks

But: in 2 graphs?

Assume vertex alignment

e.g.:
$$a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$$

[Gärtner et al., 2003]

Goal: Count common walks

But: in 2 graphs?

Assume vertex alignment

e.g.:
$$a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$$

[Gärtner et al., 2003]

Goal: Count common walks

But: in 2 graphs?

Assume vertex alignment

e.g.:
$$a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$$

[Gärtner et al., 2003]

Goal: Count common walks

But: in 2 graphs?

Assume vertex alignment

$$\textbf{e.g.:} a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$$

[Gärtner et al., 2003]

Goal: Count common walks

But: in 2 graphs?

Assume vertex alignment

$$\textbf{e.g.:} a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$$

[Gärtner et al., 2003]

Goal: Count common walks

But: in 2 graphs?

Assume vertex alignment

e.g.:
$$a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$$
[Gärtner et al., 2003]

Goal: Count common walks

But: in 2 graphs?

Assume vertex alignment

e.g.:
$$a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$$

Create alignment graph

[Gärtner et al., 2003]

Goal: Count common walks

But: in 2 graphs?

Assume vertex alignment

e.g.: $a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$

- Create alignment graph
- Walk in alignment graph
 e.g.: b≡2, c≡3, d≡4, b≡2

[Gärtner et al., 2003]

Goal: Count common walks

But: in 2 graphs?

- Assume vertex alignment
 e.g.:a≡1, b≡2, c≡3, d≡4
- Create alignment graph
- Walk in alignment graph
 e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available

[Gärtner et al., 2003]

Goal: Count common walks

But: in 2 graphs?

Assume vertex alignment

e.g.:
$$a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$$

- Create alignment graph
- Walk in alignment graph
 e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available \implies Use all possible alignments

[Gärtner et al., 2003]

Direct product graph: $A_{\times} = A \otimes A'$

Goal: Count common walks

But: in 2 graphs?

Assume vertex alignment

e.g.:
$$a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$$

- Create alignment graph
- Walk in alignment graph
 e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available ⇒ Use all possible alignments

[Gärtner et al., 2003]

Direct product graph: $A_{\times} = A \otimes A'$ $A_{\times} x_{\times} = (Ax) \otimes (A'x')$

Goal: Count common walks

But: in 2 graphs?

Assume vertex alignment

e.g.:
$$a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$$

- Create alignment graph
- Walk in alignment graph
 e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available ⇒ Use all possible alignments

[Gärtner et al., 2003]

Direct product graph: $A_{\times} = A \otimes A'$ $A_{\times}x_{\times} = (Ax) \otimes (A'x')$

Goal: Count common walks

But: in 2 graphs?

Assume vertex alignment

e.g.: $a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$

- Create alignment graph
- Walk in alignment graph
 e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available ⇒ Use all possible alignments

But: If vertices are not similar?

[Gärtner et al., 2003]

Direct product graph: $A_{\times} = A \otimes A'$ $A_{\times}x_{\times} = (Ax) \otimes (A'x')$

Goal: Count common walks

But: in 2 graphs?

Assume vertex alignment

e.g.: $a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$

- Create alignment graph
- Walk in alignment graph
 e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available ⇒ Use all possible alignments

But: If vertices are not similar?

[Gärtner et al., 2003]

Direct product graph: $A_{\times} = A \otimes A'$ $A_{\times} x_{\times} = (Ax) \otimes (A'x')$

Goal: Count common walks

But: in 2 graphs?

Assume vertex alignment

e.g.:
$$a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$$

- Create alignment graph
- Walk in alignment graph
 e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available ⇒ Use all possible alignments

But: If vertices are not similar? → Not all alignments equally good

- Dissimilar vertices can be noisy
- Do not contribute to similarity

- Dissimilar vertices can be noisy
- Do not contribute to similarity

 \implies Only match similar vertices

- Dissimilar vertices can be noisy
- Do not contribute to similarity

Labeled vertices

✓ same label \Rightarrow similar vertices

 \implies Only match similar vertices

- Dissimilar vertices can be noisy
- Do not contribute to similarity

Labeled vertices

- ✓ same label \Rightarrow similar vertices
- \checkmark G_2 has no O. What now?
- \checkmark How close is C to H?

 \implies Only match similar vertices

- Dissimilar vertices can be noisy
- Do not contribute to similarity

- ✓ same label \Rightarrow similar vertices
- \checkmark G₂ has no O. What now?
- \checkmark How close is C to H?

 \implies Only match similar vertices

Unlabeled graphs

many similarity measuresnot always clear or easy

- Dissimilar vertices can be noisy
- Do not contribute to similarity

- ✓ same label \Rightarrow similar vertices
- \checkmark G₂ has no O. What now?
- \checkmark How close is C to H?

We seek a vertex partitioning

- structurally aware
- efficient to compute
- defines partition similarity

 \implies Only match similar vertices

Unlabeled graphs

many similarity measuresnot always clear or easy

- Dissimilar vertices can be noisy
- Do not contribute to similarity

- ✓ same label \Rightarrow similar vertices
- \checkmark G₂ has no O. What now?
- \checkmark How close is C to H?

We seek a vertex partitioning

- structurally aware
- efficient to compute
- defines partition similarity

 \implies Only match similar vertices

Unlabeled graphs

many similarity measuresnot always clear or easy

We propose to use \implies core decomposition

Definition (*k***-core of graph** *G***)** A maximal subgraph with vertices of degree at least *k*.

Decomposition: $\kappa: V \to \mathbb{N}$

Definition (*k***-core of graph** *G***)** A maximal subgraph with vertices of degree at least *k*.

Definition (vertex coreness)

$$\kappa(u) \coloneqq \max_{u \in H(k)} k$$

Decomposition: $\kappa: V \to \mathbb{N}$

Definition (k-core of graph G) A maximal subgraph with vertices of degree at least k.

Definition (vertex coreness)

$$\kappa(u) \coloneqq \max_{u \in H(k)} k$$

Decomposition: $\kappa: V \to \mathbb{N}$

• *k*-core vertices have similar structure

[Shin et al., 2016]

Definition (k-core of graph G) A maximal subgraph with vertices of degree at least k.

Decomposition: $\kappa: V \to \mathbb{N}$

k-core vertices have similar structure [Shin et al., 2016]
Needs only O(n). [Batagelj and Zaversnik, 2003]

Definition (k-core of graph G) A maximal subgraph with vertices of degree at least k.

Decomposition: $\kappa: V \to \mathbb{N}$

- k-core vertices have similar structure [Shin et al., 2016]
- Needs only O(n). [Batagelj and Zaversnik, 2003]
- Intuitive comparison between labels

[Gärtner et al., 2003]

Goal: Count similar walks

[Gärtner et al., 2003]

G 🌀

Goal: Count similar walks

Use core values as integer labels $$\operatorname{and}/\operatorname{or}$ existing labels

[Gärtner et al., 2003]

Goal: Count similar walks

Use core values as integer labels and/or existing labels close integers \iff similar structure

[Gärtner et al., 2003]

Goal: Count similar walks

Use core values as integer labels and/or existing labels close integers \iff similar structure alignment similarity from label kernel

[Gärtner et al., 2003]

Goal: Count similar walks

Use core values as integer labels and/or existing labels close integers \iff similar structure alignment similarity from label kernel

Use kernel over \mathbb{Z} $k_{\delta}(l, l') \coloneqq \max\left(0, 1 - \frac{|l-l'|}{\delta+1}\right)$ where δ : bounded support

[Gärtner et al., 2003]

Use core values as integer labels and/or existing labels close integers \iff similar structure alignment similarity from label kernel Depending on δ :

Goal: Count similar walks

Use kernel over \mathbb{Z} $k_{\delta}(l, l') \coloneqq \max\left(0, 1 - \frac{|l-l'|}{\delta+1}\right)$ where δ : bounded support

[Gärtner et al., 2003]

Use kernel over \mathbb{Z} $k_{\delta}(l, l') \coloneqq \max\left(0, 1 - \frac{|l-l'|}{\delta+1}\right)$ where δ : bounded support

Goal: Count similar walks

Use core values as integer labels and/or existing labels close integers \iff similar structure alignment similarity from label kernel Depending on δ :

• $\delta = \infty$ vanilla RW

too loose

[Gärtner et al., 2003]

Use kernel over \mathbb{Z} $k_{\delta}(l, l') \coloneqq \max\left(0, 1 - \frac{|l-l'|}{\delta+1}\right)$ where δ : bounded support

Goal: Count similar walks

Use core values as integer labels and/or existing labels close integers \iff similar structure alignment similarity from label kernel Depending on δ :

• $\delta = \infty$ vanilla RW

too loose
[Gärtner et al., 2003]

Use kernel over \mathbb{Z} $k_{\delta}(l, l') := \max\left(0, 1 - \frac{|l-l'|}{\delta+1}\right)$ where δ : bounded support

Goal: Count similar walks

- $\delta = \infty$ vanilla RW too loose
- $\delta = 0$ [Gärtner et al., 2003] too strict

[Gärtner et al., 2003]

Use kernel over \mathbb{Z} $k_{\delta}(l, l') := \max\left(0, 1 - \frac{|l-l'|}{\delta+1}\right)$ where δ : bounded support

Goal: Count similar walks

- $\delta = \infty$ vanilla RW too loose
- $\delta = 0$ [Gärtner et al., 2003] too strict

[Gärtner et al., 2003]

Use kernel over \mathbb{Z} $k_{\delta}(l, l') := \max\left(0, 1 - \frac{|l-l'|}{\delta+1}\right)$ where δ : bounded support

Goal: Count similar walks

- $\delta = \infty$ vanilla RW too loose
- $\delta = 0$ [Gärtner et al., 2003] too strict
- $\delta \in \mathbb{R}_+$ SUSAN adaptive! e.g.: 0,0.5,1,1.5,2

[Gärtner et al., 2003]

Use kernel over \mathbb{Z} $k_{\delta}(l, l') := \max\left(0, 1 - \frac{|l-l'|}{\delta+1}\right)$ where δ : bounded support

Goal: Count similar walks

- $\delta = \infty$ vanilla RW too loose
- $\delta = 0$ [Gärtner et al., 2003] too strict
- $\delta \in \mathbb{R}_+$ SUSAN adaptive! e.g.: 0,0.5,1,1.5,2

[Gärtner et al., 2003]

Use kernel over \mathbb{Z} $k_{\delta}(l, l') := \max\left(0, 1 - \frac{|l-l'|}{\delta+1}\right)$ where δ : bounded support

Goal: Count similar walks

- $\delta = \infty$ vanilla RW too loose
- $\delta = 0$ [Gärtner et al., 2003] too strict
- $\delta \in \mathbb{R}_+$ SUSAN adaptive! e.g.: 0,0.5,1,1.5,2

[Gärtner et al., 2003]

Use kernel over \mathbb{Z} $k_{\delta}(l, l') := \max\left(0, 1 - \frac{|l-l'|}{\delta+1}\right)$ where δ : bounded support

Goal: Count similar walks

- $\delta = \infty$ vanilla RW too loose
- $\delta = 0$ [Gärtner et al., 2003] too strict
- $\delta \in \mathbb{R}_+$ SUSAN adaptive! e.g.: 0,0.5,1,1.5,2

[Gärtner et al., 2003]

Use kernel over \mathbb{Z} $k_{\delta}(l, l') := \max\left(0, 1 - \frac{|l-l'|}{\delta+1}\right)$ where δ : bounded support

Goal: Count similar walks

- $\delta = \infty$ vanilla RW too loose
- $\delta = 0$ [Gärtner et al., 2003] too strict
- $\delta \in \mathbb{R}_+$ SUSAN adaptive! e.g.: 0,0.5,1,1.5,2

[Gärtner et al., 2003]

Use kernel over \mathbb{Z} $k_{\delta}(l, l') := \max\left(0, 1 - \frac{|l-l'|}{\delta+1}\right)$ where δ : bounded support

Goal: Count similar walks

- $\delta = \infty$ vanilla RW too loose
- $\delta = 0$ [Gärtner et al., 2003] too strict
- $\delta \in \mathbb{R}_+$ SUSAN adaptive! e.g.: 0,0.5,1,1.5,2

- of any # steps (with weight μ_n)
- from each vertex to every other

$$k(G_1, G_2) = \mathbf{e}^{\top} \sum_{n=0}^{\infty} \mu_n \mathbf{A}_{\times}^n \mathbf{e}$$

- of any # steps (with weight μ_n)
- from each vertex to every other

$$k(G_1, G_2) = \mathbf{e}^\top \underbrace{\sum_{n=0}^{\infty} \mu_n \mathbf{A}_{\times}^n \mathbf{e}}_{n=0}$$

- of any # steps (with weight μ_n)
- from each vertex to every other

$$k(G_1, G_2) = \mathbf{e}^{\top} \sum_{n=0}^{\infty} \mu_n \mathbf{A}_{\times}^n \mathbf{e}$$

- of any # steps (with weight μ_n)
- from each vertex to every other

$$k(G_1, G_2) = \mathbf{e}^\top \sum_{n=0}^\infty \mu_n \mathbf{A}_{\times}^n \mathbf{e}$$

- of any # steps (with weight μ_n)
- from each vertex to every other

$$k(G_1, G_2) = \mathbf{e}^{\top} \sum_{n=0}^{\infty} \mu_n \mathbf{A}_{\times}^n \mathbf{e}$$

Finally: sum # common walks:

- of any # steps (with weight μ_n)
- from each vertex to every other

Practical weights μ give:

- Geometric: $\mathbf{B}_g = (I \lambda \mathbf{A}_{\times})^{-1} \mathbf{e}$
- Exponential: B_e = exp(A_×)e

$$k(G_1, G_2) = \mathbf{e}^\top \sum_{n=0}^\infty \mu_n \mathbf{A}_{\times}^n \mathbf{e}$$

Finally: sum # common walks:

- of any # steps (with weight μ_n)
- from each vertex to every other

$$k(G_1, G_2) = \mathbf{e}^{\top} \sum_{n=0}^{\infty} \mu_n \mathbf{A}_{\times}^n \mathbf{e}$$

Practical weights μ give:

- Geometric: $\mathbf{B}_g = (I \lambda \mathbf{A}_{\times})^{-1} \mathbf{e}$
- Exponential: B_e = exp(A_×)e

 \Longrightarrow computable as matrix vector (MV) operations with \mathbf{A}_{\times}

Finally: sum # common walks:

- of any # steps (with weight μ_n)
- from each vertex to every other

$$k(G_1, G_2) = \mathbf{e}^\top \underbrace{\sum_{n=0}^\infty \mu_n \mathbf{A}_{\times}^n \mathbf{e}}_{\mathbf{B}}$$

Practical weights μ give:

- Geometric: $\mathbf{B}_g = (I \lambda \mathbf{A}_{\times})^{-1} \mathbf{e}$ Conjugate Gradient
- Exponential: $\mathbf{B}_e = \exp(\mathbf{A}_{\times})\mathbf{e}$

Conjugate Gradient [Al-Mohy and Higham, 2011]

 \Longrightarrow computable as matrix vector (MV) operations with $\textbf{A}_{\!\times}$

But: How do we compute the MV operations efficiently?

To compute SUSAN efficiently

To compute SUSAN efficiently

Lemma The MV operator for SUSAN with bandwidth δ is computable as $\mathbf{A}_{\times} x = \mathbf{T} \odot (\mathbf{A}''(\mathbf{T} \odot \mathbf{X})\mathbf{A}'^{\top})$

for T block banded with constant blocks and bandwidth δ , time $O((\delta + 1)(n' + n'')b^2)$

for b the largest core size and n', n'' the vertex numbers of G', G''.

Efficiently

To compute SUSAN efficiently

• we decompose the contribution of each graph

Lemma The MV operator for SUSAN with bandwidth δ is computable as $\mathbf{A}_{\times} x = \mathbf{T} \odot (\mathbf{A}''(\mathbf{T} \odot \mathbf{X})\mathbf{A}'^{\top})$ for \mathbf{T} block banded with constant blocks and bandwidth δ , time

$$O((\delta+1)(n'+n'')b^2)$$

for b the largest core size and n', n'' the vertex numbers of G', G''.

To compute SUSAN efficiently

- we decompose the contribution of each graph
- this reveals a block structure

Lemma The MV operator for SUSAN with bandwidth δ is computable as $\mathbf{A}_{\times} x = \mathbf{T} \odot (\mathbf{A}''(\mathbf{T} \odot \mathbf{X})\mathbf{A}'^{\top})$ for \mathbf{T} block banded with constant blocks and bandwidth δ , time

$$O((\delta+1)(n'+n'')b^2)$$

for b the largest core size and n', n'' the vertex numbers of G', G''.

Efficiently

Efficiently

To compute SUSAN efficiently

- we decompose the contribution of each graph
- this reveals a block structure
- groupping the vertices of equal coreness

Lemma The MV operator for SUSAN with bandwidth δ is computable as $\mathbf{A}_{\times} x = \mathbf{T} \odot (\mathbf{A}''(\mathbf{T} \odot \mathbf{X}) \mathbf{A}'^{\top})$

for **T** block banded with constant blocks and bandwidth δ , time $O((\delta + 1)(n' + n'')b^2)$

for b the largest core size and n', n'' the vertex numbers of G', G''.

To compute SUSAN efficiently

- we decompose the contribution of each graph
- this reveals a block structure
- groupping the vertices of equal coreness
- exploit the bounded support

Lemma

The MV operator for SUSAN with bandwidth δ is computable as $\mathbf{A}_{\times} x = \mathbf{T} \odot (\mathbf{A}''(\mathbf{T} \odot \mathbf{X}) \mathbf{A}'^{\top})$

for **T** block banded with constant blocks and bandwidth δ , time $O((\delta + 1)(n' + n'')b^2)$

for b the largest core size and n', n'' the vertex numbers of G', G''.

Efficiently

To compute SUSAN efficiently

- we decompose the contribution of each graph
- this reveals a block structure
- groupping the vertices of equal coreness
- exploit the bounded support
- and reduce computational complexity.

Lemma

The MV operator for SUSAN with bandwidth δ is computable as $\mathbf{A}_{\times} x = \mathbf{T} \odot (\mathbf{A}''(\mathbf{T} \odot \mathbf{X}) \mathbf{A}'^{\top})$

for **T** block banded with constant blocks and bandwidth δ , time $O((\delta + 1)(n' + n'')b^2)$

for b the largest core size and n', n'' the vertex numbers of G', G''.

Efficiently

Results

• outperforms naive computation, especially for small δ .

Number of iterations until convergence

SUSAN

- outperforms naive computation, especially for small $\delta.$

Number of iterations until convergence

SUSAN

- outperforms naive computation, especially for small $\delta.$
- (geometric) converges faster for smaller δ .

We study

- random walk graph kernels
- weighted vertex alignments

We study

- random walk graph kernels
- weighted vertex alignments

We propose

We study

- random walk graph kernels
- weighted vertex alignments

We propose

coreness as structurally-aware vertex labels

We study

- random walk graph kernels
- weighted vertex alignments

- coreness as structurally-aware vertex labels
- induce intuitive vertex similarity

We study

- random walk graph kernels
- weighted vertex alignments

- coreness as structurally-aware vertex labels
- induce intuitive vertex similarity
- bounded support kernel over coreness

We study

- random walk graph kernels
- weighted vertex alignments

- coreness as structurally-aware vertex labels
- induce intuitive vertex similarity
- bounded support kernel over coreness

With our work

We study

- random walk graph kernels
- weighted vertex alignments

We propose

- coreness as structurally-aware vertex labels
- induce intuitive vertex similarity
- bounded support kernel over coreness

With our work

close the gap between loose and strict alignment constraints

We study

- random walk graph kernels
- weighted vertex alignments

We propose

- coreness as structurally-aware vertex labels
- induce intuitive vertex similarity
- bounded support kernel over coreness

With our work

- close the gap between loose and strict alignment constraints
- competitive classification accuracy for certain datasets

Conclusion

We study

- random walk graph kernels
- weighted vertex alignments

We propose

- coreness as structurally-aware vertex labels
- induce intuitive vertex similarity
- bounded support kernel over coreness

With our work

- close the gap between loose and strict alignment constraints
- competitive classification accuracy for certain datasets
- efficient iterative scheme for practical variants

Conclusion

Thank you!

We study

- random walk graph kernels
- weighted vertex alignments

We propose

- coreness as structurally-aware vertex labels
- induce intuitive vertex similarity
- bounded support kernel over coreness

With our work

- close the gap between loose and strict alignment constraints
- competitive classification accuracy for certain datasets
- efficient iterative scheme for practical variants

References i

Al-Mohy, A. H. and Higham, N. J. (2011). Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators. *SIAM J. Sci. Comp.*

 Batagelj, V. and Zaversnik, M. (2003).
An O(m) Algorithm for Cores Decomposition of Networks.

arXiv:cs/0310049.

References ii

Gärtner, T., Flach, P., and Wrobel, S. (2003). On Graph Kernels: Hardness Results and Efficient Alternatives.

In Learning Theory and Kernel Machines.

 Shin, K., Eliassi-Rad, T., and Faloutsos, C. (2016).
CoreScope: Graph Mining Using k-Core
Analysis—Patterns, Anomalies and Algorithms.
In Data Mining (ICDM), 2016 IEEE 16th International Conference On, pages 469–478. IEEE.