
SUSAN: The Structural Similarity Random
Walk Kernel

Janis Kalofolias, Pascal Welke, Jilles Vreeken

Comparing graphs

proteins

connectome

genetic
structure

Applications

Classification, Regression,
Clustering, Dim. Reduction

. . .

Non-vectorial data

Machine learning methods

Standard Tools

SVM, Logistic,
K-Means, PCR

. . .

Need vector data

Can we apply standard tools on graphs?
=⇒ Use a kernel on graphs

1

Comparing graphs

proteins

connectome

genetic
structure

Applications
Classification, Regression,

Clustering, Dim. Reduction
. . .

Non-vectorial data

Machine learning methods

Standard Tools

SVM, Logistic,
K-Means, PCR

. . .

Need vector data

Can we apply standard tools on graphs?
=⇒ Use a kernel on graphs

1

Comparing graphs

proteins

connectome

genetic
structure

Applications
Classification, Regression,

Clustering, Dim. Reduction
. . .

Non-vectorial data

Machine learning methods

Standard Tools
SVM, Logistic,
K-Means, PCR

. . .

Need vector data

Can we apply standard tools on graphs?
=⇒ Use a kernel on graphs

1

Comparing graphs

proteins

connectome

genetic
structure

Applications
Classification, Regression,

Clustering, Dim. Reduction
. . .

Non-vectorial data

Machine learning methods

Standard Tools
SVM, Logistic,
K-Means, PCR

. . .

Need vector data

Can we apply standard tools on graphs?

=⇒ Use a kernel on graphs

1

Comparing graphs

proteins

connectome

genetic
structure

Applications
Classification, Regression,

Clustering, Dim. Reduction
. . .

Non-vectorial data

Machine learning methods

Standard Tools
SVM, Logistic,
K-Means, PCR

. . .

Need vector data

Can we apply standard tools on graphs?

=⇒ Use a kernel on graphs

1

Comparing graphs

proteins

connectome

genetic
structure

Applications
Classification, Regression,

Clustering, Dim. Reduction
. . .

Non-vectorial data

Machine learning methods

Standard Tools
SVM, Logistic,
K-Means, PCR

. . .

Need vector data

Can we apply standard tools on graphs?

=⇒ Use a kernel on graphs

7

1

Comparing graphs

proteins

connectome

genetic
structure

Applications
Classification, Regression,

Clustering, Dim. Reduction
. . .

Non-vectorial data

Machine learning methods

Standard Tools
SVM, Logistic,
K-Means, PCR

. . .

Need vector data

Can we apply standard tools on graphs?

=⇒ Use a kernel on graphs

1

Comparing graphs

proteins

connectome

genetic
structure

Applications
Classification, Regression,

Clustering, Dim. Reduction
. . .

Non-vectorial data

Machine learning methods

Standard Tools
SVM, Logistic,
K-Means, PCR

. . .

Need vector data

Can we apply standard tools on graphs?

=⇒ Use a kernel on graphs

1

Comparing graphs

proteins

connectome

genetic
structure

Applications
Classification, Regression,

Clustering, Dim. Reduction
. . .

Non-vectorial data

Machine learning methods

Standard Tools
SVM, Logistic,
K-Means, PCR

. . .

Need vector data

Can we apply standard tools on graphs?
=⇒ Use a kernel on graphs

1

How do kernels compare graphs?

Goal: Can we define something like 〈G1,G2〉?

φ
φ

G1

G2

Hilbert
Space

H

Kernels define a space H
with 〈·, ·〉 and mapping function φ

=⇒Use as graph similarity

k(G1,G2) :=
〈
φ(

G1

)

,

φ(

G2

)
〉

H

We focus on Random Walk kernels

2

How do kernels compare graphs?

Goal: Can we define something like 〈G1,G2〉?

φ
φ

G1

G2

Hilbert
Space

H

Kernels define a space H
with 〈·, ·〉 and mapping function φ

=⇒Use as graph similarity

k(G1,G2) :=
〈
φ(

G1

)

,

φ(

G2

)
〉

H

We focus on Random Walk kernels

2

How do kernels compare graphs?

Goal: Can we define something like 〈G1,G2〉?

φ
φ

G1

G2

Hilbert
Space

H

Kernels define a space H
with 〈·, ·〉 and mapping function φ

=⇒Use as graph similarity

k(G1,G2) :=
〈
φ(

G1

)

,

φ(

G2

)
〉

H

We focus on Random Walk kernels

2

How do kernels compare graphs?

Goal: Can we define something like 〈G1,G2〉?

φ
φ

G1

G2

Hilbert
Space
H
〈·, ·〉

Kernels define a space H
with 〈·, ·〉 and mapping function φ

=⇒Use as graph similarity

k(G1,G2) :=
〈
φ(

G1

)

,

φ(

G2

)
〉

H

We focus on Random Walk kernels

2

How do kernels compare graphs?

Goal: Can we define something like 〈G1,G2〉?

φ
φ

G1

G2

Hilbert
Space
H
〈·, ·〉

Kernels define a space H
with 〈·, ·〉 and mapping function φ

=⇒Use as graph similarity

k(G1,G2) :=
〈
φ(

G1

)

,

φ(

G2

)
〉

H

We focus on Random Walk kernels

2

How do kernels compare graphs?

Goal: Can we define something like 〈G1,G2〉?

φ
φ

G1

G2

Hilbert
Space
H
〈·, ·〉

Kernels define a space H
with 〈·, ·〉 and mapping function φ

=⇒Use as graph similarity

k(G1,G2) :=
〈
φ(

G1

)

,

φ(

G2

)
〉

H

We focus on Random Walk kernels

2

How do kernels compare graphs?

Goal: Can we define something like 〈G1,G2〉?

φ
φ

G1

G2

Hilbert
Space
H
〈·, ·〉

Kernels define a space H
with 〈·, ·〉 and mapping function φ

=⇒Use as graph similarity

k(G1,G2) :=
〈

φ(G1), φ(G2)

〉
H

We focus on Random Walk kernels

2

How do kernels compare graphs?

Goal: Can we define something like 〈G1,G2〉?

φ
φ

〈 〉,

G1

G2

Hilbert
Space
H
〈·, ·〉

Kernels define a space H
with 〈·, ·〉 and mapping function φ

=⇒Use as graph similarity

k(G1,G2) :=

〈
φ(G1), φ(G2)

〉
H

We focus on Random Walk kernels

2

How do kernels compare graphs?

Goal: Can we define something like 〈G1,G2〉?

φ
φ

〈 〉,

G1

G2

Hilbert
Space
H
〈·, ·〉

Kernels define a space H
with 〈·, ·〉 and mapping function φ

=⇒Use as graph similarity
k(G1,G2) :=

〈
φ(G1), φ(G2)

〉
H

We focus on Random Walk kernels

2

How do kernels compare graphs?

Goal: Can we define something like 〈G1,G2〉?

φ
φ

〈 〉,

G1

G2

Hilbert
Space
H
〈·, ·〉

Kernels define a space H
with 〈·, ·〉 and mapping function φ

=⇒Use as graph similarity
k(G1,G2) :=

〈
φ(G1), φ(G2)

〉
H

We focus on Random Walk kernels

2

How do kernels compare graphs?

Goal: Can we define something like 〈G1,G2〉?

φ
φ

〈 〉,

G1

G2

Hilbert
Space
H
〈·, ·〉

Kernels define a space H
with 〈·, ·〉 and mapping function φ

=⇒Use as graph similarity
k(G1,G2) :=

〈
φ(G1), φ(G2)

〉
H

We focus on Random Walk kernels
2

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1
1 2 3

4

1-step walks from 1, 3?
0
2
0
1

︸︷︷︸

x1

=

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

︸ ︷︷ ︸

A

1
0
1
0

︸︷︷︸

x0

#k-step walks from x0?
xk = Akx0

Goal: Count graph walks

But: in 2 graphs?

• Assume vertex alignment
e.g.:a≡1, b≡2, c≡3, d≡4

• Create alignment graph
• Walk in alignment graph

e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1
1 2 3

4

ex: 3-step walk: (1, 2, 3, 4)

1-step walks from 1, 3?
0
2
0
1

︸︷︷︸

x1

=

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

︸ ︷︷ ︸

A

1
0
1
0

︸︷︷︸

x0

#k-step walks from x0?
xk = Akx0

Goal: Count graph walks

But: in 2 graphs?

• Assume vertex alignment
e.g.:a≡1, b≡2, c≡3, d≡4

• Create alignment graph
• Walk in alignment graph

e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1
1 2 3

4

ex: 3-step walk: (1, 2, 3, 4)

1-step walks from 1, 3?
0
2
0
1

︸︷︷︸

x1

=

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

︸ ︷︷ ︸

A

1
0
1
0

︸︷︷︸

x0

#k-step walks from x0?
xk = Akx0

Goal: Count graph walks

But: in 2 graphs?

• Assume vertex alignment
e.g.:a≡1, b≡2, c≡3, d≡4

• Create alignment graph
• Walk in alignment graph

e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1
1 2 3

4

1-step walks from 1, 3?
0
2
0
1

︸︷︷︸

x1

=

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

︸ ︷︷ ︸

A

1
0
1
0

︸︷︷︸

x0

#k-step walks from x0?
xk = Akx0

Goal: Count graph walks

But: in 2 graphs?

• Assume vertex alignment
e.g.:a≡1, b≡2, c≡3, d≡4

• Create alignment graph
• Walk in alignment graph

e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1
1 2 3

4

1-step walks from 1, 3?
0
2
0
1

︸︷︷︸

x1

=

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

︸ ︷︷ ︸

A

1
0
1
0

︸︷︷︸

x0

#k-step walks from x0?
xk = Akx0

Goal: Count graph walks

But: in 2 graphs?

• Assume vertex alignment
e.g.:a≡1, b≡2, c≡3, d≡4

• Create alignment graph
• Walk in alignment graph

e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1
1 2 3

4

1-step walks from 1, 3?
0
2
0
1

︸︷︷︸

x1

=

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

︸ ︷︷ ︸

A

1
0
1
0

︸︷︷︸

x0

#k-step walks from x0?
xk = Akx0

Goal: Count graph walks

But: in 2 graphs?

• Assume vertex alignment
e.g.:a≡1, b≡2, c≡3, d≡4

• Create alignment graph
• Walk in alignment graph

e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1
1 2 3

4

1-step walks from 1, 3?
0
2
0
1

︸︷︷︸

x1

=

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

︸ ︷︷ ︸

A

1
0
1
0

︸︷︷︸

x0

#k-step walks from x0?
xk = Akx0

Goal: Count graph walks

But: in 2 graphs?

• Assume vertex alignment
e.g.:a≡1, b≡2, c≡3, d≡4

• Create alignment graph
• Walk in alignment graph

e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1
1 2 3

4

1-step walks from 1, 3?
0
2
0
1

︸︷︷︸

x1

=

0 1 0 0
1 0 1 1
0 1 0 1
0 1 1 0

︸ ︷︷ ︸

A

1
0
1
0

︸︷︷︸

x0

#k-step walks from x0?
xk = Akx0

Goal: Count graph walks

But: in 2 graphs?

• Assume vertex alignment
e.g.:a≡1, b≡2, c≡3, d≡4

• Create alignment graph
• Walk in alignment graph

e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

1 2 3
4

a
b

c
d

ef
g

Goal: Count graph walks

But: in 2 graphs?

• Assume vertex alignment
e.g.:a≡1, b≡2, c≡3, d≡4

• Create alignment graph
• Walk in alignment graph

e.g.: b≡2, c≡3, d≡4, b≡2
But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

1 2 3
4

a
b

c
d

ef
g

Goal: Count common walks

But: in 2 graphs?
• Assume vertex alignment

e.g.:a≡1, b≡2, c≡3, d≡4

• Create alignment graph
• Walk in alignment graph

e.g.: b≡2, c≡3, d≡4, b≡2
But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

alignment
graph

1 2 3
4

a
b

c
d

ef
g

a≡1
b ≡2

c ≡3
d ≡4

Goal: Count common walks

But: in 2 graphs?
• Assume vertex alignment

e.g.:a≡1, b≡2, c≡3, d≡4
• Create alignment graph

• Walk in alignment graph
e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

alignment
graph

1 2 3
4

a
b

c
d

ef
g

a≡1
b ≡2

c ≡3
d ≡4

Goal: Count common walks

But: in 2 graphs?
• Assume vertex alignment

e.g.:a≡1, b≡2, c≡3, d≡4
• Create alignment graph

• Walk in alignment graph
e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

alignment
graph

1 2 3
4

a
b

c
d

ef
g

a≡1
b ≡2

c ≡3
d ≡4

Goal: Count common walks

But: in 2 graphs?
• Assume vertex alignment

e.g.:a≡1, b≡2, c≡3, d≡4
• Create alignment graph

• Walk in alignment graph
e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

alignment
graph

1 2 3
4

a
b

c
d

ef
g

a≡1
b ≡2

c ≡3
d ≡4

Goal: Count common walks

But: in 2 graphs?
• Assume vertex alignment

e.g.:a≡1, b≡2, c≡3, d≡4
• Create alignment graph

• Walk in alignment graph
e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

alignment
graph

1 2 3
4

a
b

c
d

ef
g

a≡1
b ≡2

c ≡3
d ≡4

Goal: Count common walks

But: in 2 graphs?
• Assume vertex alignment

e.g.:a≡1, b≡2, c≡3, d≡4
• Create alignment graph

• Walk in alignment graph
e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

alignment
graph

1 2 3
4

a
b

c
d

ef
g

7

7

a≡1
b ≡2

c ≡3
d ≡4

Goal: Count common walks

But: in 2 graphs?
• Assume vertex alignment

e.g.:a≡1, b≡2, c≡3, d≡4
• Create alignment graph

• Walk in alignment graph
e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

alignment
graph

1 2 3
4

a
b

c
d

ef
g

Goal: Count common walks

But: in 2 graphs?
• Assume vertex alignment

e.g.:a≡1, b≡2, c≡3, d≡4
• Create alignment graph
• Walk in alignment graph

e.g.: b≡2, c≡3, d≡4, b≡2

But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

1 2 3
4

a
b

c
d

ef
g

Goal: Count common walks

But: in 2 graphs?
• Assume vertex alignment

e.g.:a≡1, b≡2, c≡3, d≡4
• Create alignment graph
• Walk in alignment graph

e.g.: b≡2, c≡3, d≡4, b≡2
But: Alignments are rarely available

=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Goal: Count common walks

But: in 2 graphs?
• Assume vertex alignment

e.g.:a≡1, b≡2, c≡3, d≡4
• Create alignment graph
• Walk in alignment graph

e.g.: b≡2, c≡3, d≡4, b≡2
But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Direct product graph:
A× = A⊗ A′

A×x× = (Ax)⊗ (A′x ′)

Goal: Count common walks

But: in 2 graphs?
• Assume vertex alignment

e.g.:a≡1, b≡2, c≡3, d≡4
• Create alignment graph
• Walk in alignment graph

e.g.: b≡2, c≡3, d≡4, b≡2
But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Direct product graph:
A× = A⊗ A′

A×x× = (Ax)⊗ (A′x ′)

Goal: Count common walks

But: in 2 graphs?
• Assume vertex alignment

e.g.:a≡1, b≡2, c≡3, d≡4
• Create alignment graph
• Walk in alignment graph

e.g.: b≡2, c≡3, d≡4, b≡2
But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Direct product graph:
A× = A⊗ A′

A×x× = (Ax)⊗ (A′x ′)

Goal: Count common walks

But: in 2 graphs?
• Assume vertex alignment

e.g.:a≡1, b≡2, c≡3, d≡4
• Create alignment graph
• Walk in alignment graph

e.g.: b≡2, c≡3, d≡4, b≡2
But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?

=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Direct product graph:
A× = A⊗ A′

A×x× = (Ax)⊗ (A′x ′)

Goal: Count common walks

But: in 2 graphs?
• Assume vertex alignment

e.g.:a≡1, b≡2, c≡3, d≡4
• Create alignment graph
• Walk in alignment graph

e.g.: b≡2, c≡3, d≡4, b≡2
But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?

=⇒Not all alignments equally good

3

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Direct product graph:
A× = A⊗ A′

A×x× = (Ax)⊗ (A′x ′)

Goal: Count common walks

But: in 2 graphs?
• Assume vertex alignment

e.g.:a≡1, b≡2, c≡3, d≡4
• Create alignment graph
• Walk in alignment graph

e.g.: b≡2, c≡3, d≡4, b≡2
But: Alignments are rarely available
=⇒Use all possible alignments

But: If vertices are not similar?
=⇒Not all alignments equally good

3

Are all vertex alignments equally good?

• Dissimilar vertices can be noisy
• Do not contribute to similarity

=⇒ Only match similar vertices

Labeled vertices

HO

H
N

O
vs

3 same label⇒ similar vertices
7 G2 has no O. What now?
7 How close is C to H?

Unlabeled graphs

3 many similarity measures
7 not always clear or easy

We seek a vertex partitioning
• structurally aware
• efficient to compute
• defines partition similarity

We propose to use
=⇒ core decomposition

4

Are all vertex alignments equally good?

• Dissimilar vertices can be noisy
• Do not contribute to similarity

=⇒ Only match similar vertices

Labeled vertices

HO

H
N

O
vs

3 same label⇒ similar vertices
7 G2 has no O. What now?
7 How close is C to H?

Unlabeled graphs

3 many similarity measures
7 not always clear or easy

We seek a vertex partitioning
• structurally aware
• efficient to compute
• defines partition similarity

We propose to use
=⇒ core decomposition

4

Are all vertex alignments equally good?

• Dissimilar vertices can be noisy
• Do not contribute to similarity

=⇒ Only match similar vertices

Labeled vertices

HO

H
N

O
vs

3 same label⇒ similar vertices

7 G2 has no O. What now?
7 How close is C to H?

Unlabeled graphs

3 many similarity measures
7 not always clear or easy

We seek a vertex partitioning
• structurally aware
• efficient to compute
• defines partition similarity

We propose to use
=⇒ core decomposition

4

Are all vertex alignments equally good?

• Dissimilar vertices can be noisy
• Do not contribute to similarity

=⇒ Only match similar vertices

Labeled vertices

HO

H
N

O
vs

3 same label⇒ similar vertices
7 G2 has no O. What now?
7 How close is C to H?

Unlabeled graphs

3 many similarity measures
7 not always clear or easy

We seek a vertex partitioning
• structurally aware
• efficient to compute
• defines partition similarity

We propose to use
=⇒ core decomposition

4

Are all vertex alignments equally good?

• Dissimilar vertices can be noisy
• Do not contribute to similarity

=⇒ Only match similar vertices

Labeled vertices

HO

H
N

O
vs

3 same label⇒ similar vertices
7 G2 has no O. What now?
7 How close is C to H?

Unlabeled graphs

3 many similarity measures
7 not always clear or easy

We seek a vertex partitioning
• structurally aware
• efficient to compute
• defines partition similarity

We propose to use
=⇒ core decomposition

4

Are all vertex alignments equally good?

• Dissimilar vertices can be noisy
• Do not contribute to similarity

=⇒ Only match similar vertices

Labeled vertices

HO

H
N

O
vs

3 same label⇒ similar vertices
7 G2 has no O. What now?
7 How close is C to H?

Unlabeled graphs

3 many similarity measures
7 not always clear or easy

We seek a vertex partitioning
• structurally aware
• efficient to compute
• defines partition similarity

We propose to use
=⇒ core decomposition

4

Are all vertex alignments equally good?

• Dissimilar vertices can be noisy
• Do not contribute to similarity

=⇒ Only match similar vertices

Labeled vertices

HO

H
N

O
vs

3 same label⇒ similar vertices
7 G2 has no O. What now?
7 How close is C to H?

Unlabeled graphs

3 many similarity measures
7 not always clear or easy

We seek a vertex partitioning
• structurally aware
• efficient to compute
• defines partition similarity

We propose to use
=⇒ core decomposition

4

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example
H(0)

Definition (vertex
coreness)

κ(u) := max
u∈H(k)

k

Decomposition: κ : V → N

• k-core vertices have similar structure [Shin et al., 2016]
• Needs only O(n). [Batagelj and Zaversnik, 2003]
• Intuitive comparison between labels

5

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example
H(0)

Definition (vertex
coreness)

κ(u) := max
u∈H(k)

k

Decomposition: κ : V → N

• k-core vertices have similar structure [Shin et al., 2016]
• Needs only O(n). [Batagelj and Zaversnik, 2003]
• Intuitive comparison between labels

5

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example
H(0)

Definition (vertex
coreness)

κ(u) := max
u∈H(k)

k

Decomposition: κ : V → N

• k-core vertices have similar structure [Shin et al., 2016]
• Needs only O(n). [Batagelj and Zaversnik, 2003]
• Intuitive comparison between labels

5

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example
H(0)

Definition (vertex
coreness)

κ(u) := max
u∈H(k)

k

Decomposition: κ : V → N

• k-core vertices have similar structure [Shin et al., 2016]
• Needs only O(n). [Batagelj and Zaversnik, 2003]
• Intuitive comparison between labels

5

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example
H(0)

H(4)

Definition (vertex
coreness)

κ(u) := max
u∈H(k)

k

Decomposition: κ : V → N

• k-core vertices have similar structure [Shin et al., 2016]
• Needs only O(n). [Batagelj and Zaversnik, 2003]
• Intuitive comparison between labels

5

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example
H(0)

H(3)

H(4)

Definition (vertex
coreness)

κ(u) := max
u∈H(k)

k

Decomposition: κ : V → N

• k-core vertices have similar structure [Shin et al., 2016]
• Needs only O(n). [Batagelj and Zaversnik, 2003]
• Intuitive comparison between labels

5

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example
H(0)H(0)

H(1)

H(2)

H(3)

H(4)

Definition (vertex
coreness)

κ(u) := max
u∈H(k)

k

Decomposition: κ : V → N

• k-core vertices have similar structure [Shin et al., 2016]
• Needs only O(n). [Batagelj and Zaversnik, 2003]
• Intuitive comparison between labels

5

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example
H(0)H(0)

H(1)

H(2)

H(3)

H(4)

Definition (vertex
coreness)

κ(u) := max
u∈H(k)

k

Decomposition: κ : V → N

• k-core vertices have similar structure [Shin et al., 2016]
• Needs only O(n). [Batagelj and Zaversnik, 2003]
• Intuitive comparison between labels

5

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example
H(0)H(0)

H(1)

H(2)

H(3)

H(4)

Definition (vertex
coreness)

κ(u) := max
u∈H(k)

k

Decomposition: κ : V → N

• k-core vertices have similar structure [Shin et al., 2016]
• Needs only O(n). [Batagelj and Zaversnik, 2003]
• Intuitive comparison between labels

5

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example
H(0)H(0)

H(1)

H(2)

H(3)

H(4)

Definition (vertex
coreness)

κ(u) := max
u∈H(k)

k

Decomposition: κ : V → N

• k-core vertices have similar structure [Shin et al., 2016]

• Needs only O(n). [Batagelj and Zaversnik, 2003]
• Intuitive comparison between labels

5

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example
H(0)H(0)

H(1)

H(2)

H(3)

H(4)

Definition (vertex
coreness)

κ(u) := max
u∈H(k)

k

Decomposition: κ : V → N

• k-core vertices have similar structure [Shin et al., 2016]
• Needs only O(n). [Batagelj and Zaversnik, 2003]

• Intuitive comparison between labels

5

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example
H(0)H(0)

H(1)

H(2)

H(3)

H(4)

Definition (vertex
coreness)

κ(u) := max
u∈H(k)

k

Decomposition: κ : V → N

• k-core vertices have similar structure [Shin et al., 2016]
• Needs only O(n). [Batagelj and Zaversnik, 2003]
• Intuitive comparison between labels 5

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers ⇐⇒ similar structure
alignment similarity from label kernel

Depending on δ:

• δ =∞ vanilla RW
too loose

• δ = 0 [Gärtner et al., 2003]
too strict

• δ ∈ R+ SUSAN
adaptive! e.g.: 0,0.5,1,1.5,2

6

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers ⇐⇒ similar structure
alignment similarity from label kernel

Depending on δ:

• δ =∞ vanilla RW
too loose

• δ = 0 [Gärtner et al., 2003]
too strict

• δ ∈ R+ SUSAN
adaptive! e.g.: 0,0.5,1,1.5,2

6

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers ⇐⇒ similar structure

alignment similarity from label kernel
Depending on δ:

• δ =∞ vanilla RW
too loose

• δ = 0 [Gärtner et al., 2003]
too strict

• δ ∈ R+ SUSAN
adaptive! e.g.: 0,0.5,1,1.5,2

6

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers ⇐⇒ similar structure
alignment similarity from label kernel

Depending on δ:

• δ =∞ vanilla RW
too loose

• δ = 0 [Gärtner et al., 2003]
too strict

• δ ∈ R+ SUSAN
adaptive! e.g.: 0,0.5,1,1.5,2

6

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Use kernel over Z
kδ(l , l ′) := max

(
0, 1− |l−l ′|

δ+1

)
where δ: bounded support

Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers ⇐⇒ similar structure
alignment similarity from label kernel

Depending on δ:

• δ =∞ vanilla RW
too loose

• δ = 0 [Gärtner et al., 2003]
too strict

• δ ∈ R+ SUSAN
adaptive! e.g.: 0,0.5,1,1.5,2

6

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Use kernel over Z
kδ(l , l ′) := max

(
0, 1− |l−l ′|

δ+1

)
where δ: bounded support

Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers ⇐⇒ similar structure
alignment similarity from label kernel

Depending on δ:

• δ =∞ vanilla RW
too loose

• δ = 0 [Gärtner et al., 2003]
too strict

• δ ∈ R+ SUSAN
adaptive! e.g.: 0,0.5,1,1.5,2

6

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Use kernel over Z
kδ(l , l ′) := max

(
0, 1− |l−l ′|

δ+1

)
where δ: bounded support

Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers ⇐⇒ similar structure
alignment similarity from label kernel

Depending on δ:
• δ =∞ vanilla RW

too loose

• δ = 0 [Gärtner et al., 2003]
too strict

• δ ∈ R+ SUSAN
adaptive! e.g.: 0,0.5,1,1.5,2

6

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Use kernel over Z
kδ(l , l ′) := max

(
0, 1− |l−l ′|

δ+1

)
where δ: bounded support

Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers ⇐⇒ similar structure
alignment similarity from label kernel

Depending on δ:
• δ =∞ vanilla RW

too loose

• δ = 0 [Gärtner et al., 2003]
too strict

• δ ∈ R+ SUSAN
adaptive! e.g.: 0,0.5,1,1.5,2

6

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Use kernel over Z
kδ(l , l ′) := max

(
0, 1− |l−l ′|

δ+1

)
where δ: bounded support

Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers ⇐⇒ similar structure
alignment similarity from label kernel

Depending on δ:
• δ =∞ vanilla RW

too loose
• δ = 0 [Gärtner et al., 2003]

too strict

• δ ∈ R+ SUSAN
adaptive! e.g.: 0,0.5,1,1.5,2

6

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Use kernel over Z
kδ(l , l ′) := max

(
0, 1− |l−l ′|

δ+1

)
where δ: bounded support

Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers ⇐⇒ similar structure
alignment similarity from label kernel

Depending on δ:
• δ =∞ vanilla RW

too loose
• δ = 0 [Gärtner et al., 2003]

too strict

• δ ∈ R+ SUSAN
adaptive! e.g.: 0,0.5,1,1.5,2

6

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Use kernel over Z
kδ(l , l ′) := max

(
0, 1− |l−l ′|

δ+1

)
where δ: bounded support

Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers ⇐⇒ similar structure
alignment similarity from label kernel

Depending on δ:
• δ =∞ vanilla RW

too loose
• δ = 0 [Gärtner et al., 2003]

too strict
• δ ∈ R+ SUSAN

adaptive! e.g.: 0,0.5,1,1.5,2
6

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Use kernel over Z
kδ(l , l ′) := max

(
0, 1− |l−l ′|

δ+1

)
where δ: bounded support

Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers ⇐⇒ similar structure
alignment similarity from label kernel

Depending on δ:
• δ =∞ vanilla RW

too loose
• δ = 0 [Gärtner et al., 2003]

too strict
• δ ∈ R+ SUSAN

adaptive! e.g.: 0,0.5,1,1.5,2
6

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Use kernel over Z
kδ(l , l ′) := max

(
0, 1− |l−l ′|

δ+1

)
where δ: bounded support

Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers ⇐⇒ similar structure
alignment similarity from label kernel

Depending on δ:
• δ =∞ vanilla RW

too loose
• δ = 0 [Gärtner et al., 2003]

too strict
• δ ∈ R+ SUSAN

adaptive! e.g.: 0,0.5,1,1.5,2
6

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Use kernel over Z
kδ(l , l ′) := max

(
0, 1− |l−l ′|

δ+1

)
where δ: bounded support

Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers ⇐⇒ similar structure
alignment similarity from label kernel

Depending on δ:
• δ =∞ vanilla RW

too loose
• δ = 0 [Gärtner et al., 2003]

too strict
• δ ∈ R+ SUSAN

adaptive! e.g.: 0,0.5,1,1.5,2
6

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Use kernel over Z
kδ(l , l ′) := max

(
0, 1− |l−l ′|

δ+1

)
where δ: bounded support

Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers ⇐⇒ similar structure
alignment similarity from label kernel

Depending on δ:
• δ =∞ vanilla RW

too loose
• δ = 0 [Gärtner et al., 2003]

too strict
• δ ∈ R+ SUSAN

adaptive! e.g.: 0,0.5,1,1.5,2
6

Random Walk (Reproducing) Kernels [Gärtner et al., 2003]

G1

G2

direct product
graph

1 2 3
4

a
b

c
d

ef
g

Use kernel over Z
kδ(l , l ′) := max

(
0, 1− |l−l ′|

δ+1

)
where δ: bounded support

Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers ⇐⇒ similar structure
alignment similarity from label kernel

Depending on δ:
• δ =∞ vanilla RW

too loose
• δ = 0 [Gärtner et al., 2003]

too strict
• δ ∈ R+ SUSAN

adaptive! e.g.: 0,0.5,1,1.5,2
6

Computing the Kernel II

Finally: sum # common walks:
• of any # steps (with weight µn)

• from each vertex to every other

k(G1,G2) = e>
∞∑

n=0
µnAn

×e︸ ︷︷ ︸

B

Practical weights µ give:

• Geometric: Bg = (I − λA×)−1e

Conjugate Gradient

• Exponential: Be = exp(A×)e

[Al-Mohy and Higham, 2011]

=⇒ computable as matrix vector (MV) operations with A×

But: How do we compute the MV operations efficiently?

7

Computing the Kernel II

Finally: sum # common walks:
• of any # steps (with weight µn)

• from each vertex to every other

k(G1,G2) = e>
∞∑

n=0
µnAn

×e︸ ︷︷ ︸

B

Practical weights µ give:

• Geometric: Bg = (I − λA×)−1e

Conjugate Gradient

• Exponential: Be = exp(A×)e

[Al-Mohy and Higham, 2011]

=⇒ computable as matrix vector (MV) operations with A×

But: How do we compute the MV operations efficiently?

7

Computing the Kernel II

Finally: sum # common walks:
• of any # steps (with weight µn)

• from each vertex to every other

k(G1,G2) = e>
∞∑

n=0
µnAn

×e︸ ︷︷ ︸

B

Practical weights µ give:

• Geometric: Bg = (I − λA×)−1e

Conjugate Gradient

• Exponential: Be = exp(A×)e

[Al-Mohy and Higham, 2011]

=⇒ computable as matrix vector (MV) operations with A×

But: How do we compute the MV operations efficiently?

7

Computing the Kernel II

Finally: sum # common walks:
• of any # steps (with weight µn)

• from each vertex to every other

k(G1,G2) = e>
∞∑

n=0
µnAn

×e︸ ︷︷ ︸

B

Practical weights µ give:

• Geometric: Bg = (I − λA×)−1e

Conjugate Gradient

• Exponential: Be = exp(A×)e

[Al-Mohy and Higham, 2011]

=⇒ computable as matrix vector (MV) operations with A×

But: How do we compute the MV operations efficiently?

7

Computing the Kernel II

Finally: sum # common walks:
• of any # steps (with weight µn)

• from each vertex to every other

k(G1,G2) = e>
∞∑

n=0
µnAn

×e︸ ︷︷ ︸

B

Practical weights µ give:

• Geometric: Bg = (I − λA×)−1e

Conjugate Gradient

• Exponential: Be = exp(A×)e

[Al-Mohy and Higham, 2011]

=⇒ computable as matrix vector (MV) operations with A×

But: How do we compute the MV operations efficiently?

7

Computing the Kernel II

Finally: sum # common walks:
• of any # steps (with weight µn)

• from each vertex to every other

k(G1,G2) = e>
∞∑

n=0
µnAn

×e︸ ︷︷ ︸

B

Practical weights µ give:

• Geometric: Bg = (I − λA×)−1e

Conjugate Gradient

• Exponential: Be = exp(A×)e

[Al-Mohy and Higham, 2011]

=⇒ computable as matrix vector (MV) operations with A×

But: How do we compute the MV operations efficiently?

7

Computing the Kernel II

Finally: sum # common walks:
• of any # steps (with weight µn)

• from each vertex to every other

k(G1,G2) = e>
∞∑

n=0
µnAn

×e︸ ︷︷ ︸

B

Practical weights µ give:

• Geometric: Bg = (I − λA×)−1e

Conjugate Gradient

• Exponential: Be = exp(A×)e

[Al-Mohy and Higham, 2011]

=⇒ computable as matrix vector (MV) operations with A×

But: How do we compute the MV operations efficiently?

7

Computing the Kernel II

Finally: sum # common walks:
• of any # steps (with weight µn)

• from each vertex to every other

k(G1,G2) = e>
∞∑

n=0
µnAn

×e︸ ︷︷ ︸
B

Practical weights µ give:

• Geometric: Bg = (I − λA×)−1e Conjugate Gradient
• Exponential: Be = exp(A×)e [Al-Mohy and Higham, 2011]

=⇒ computable as matrix vector (MV) operations with A×

But: How do we compute the MV operations efficiently?

7

Computing the kernel II: Efficiently

To compute SUSAN efficiently

• we decompose the contribution of each graph
• this reveals a block structure
• groupping the vertices of equal coreness
• exploit the bounded support
• and reduce computational complexity.

Lemma
The MV operator for SUSAN with bandwidth δ is computable as

A×x = T� (A′′(T� X)A′>)
for T block banded with constant blocks and bandwidth δ, time

O
(
(δ + 1)(n′ + n′′)b2)

for b the largest core size and n′, n′′ the vertex numbers of G ′,G ′′.

8

Computing the kernel II: Efficiently

To compute SUSAN efficiently

• we decompose the contribution of each graph
• this reveals a block structure
• groupping the vertices of equal coreness
• exploit the bounded support
• and reduce computational complexity.

Lemma
The MV operator for SUSAN with bandwidth δ is computable as

A×x = T� (A′′(T� X)A′>)
for T block banded with constant blocks and bandwidth δ, time

O
(
(δ + 1)(n′ + n′′)b2)

for b the largest core size and n′, n′′ the vertex numbers of G ′,G ′′.

8

Computing the kernel II: Efficiently

To compute SUSAN efficiently
• we decompose the contribution of each graph

• this reveals a block structure
• groupping the vertices of equal coreness
• exploit the bounded support
• and reduce computational complexity.

Lemma
The MV operator for SUSAN with bandwidth δ is computable as

A×x = T� (A′′(T� X)A′>)
for T block banded with constant blocks and bandwidth δ, time

O
(
(δ + 1)(n′ + n′′)b2)

for b the largest core size and n′, n′′ the vertex numbers of G ′,G ′′.

8

Computing the kernel II: Efficiently

To compute SUSAN efficiently
• we decompose the contribution of each graph
• this reveals a block structure

• groupping the vertices of equal coreness
• exploit the bounded support
• and reduce computational complexity.

Lemma
The MV operator for SUSAN with bandwidth δ is computable as

A×x = T� (A′′(T� X)A′>)
for T block banded with constant blocks and bandwidth δ, time

O
(
(δ + 1)(n′ + n′′)b2)

for b the largest core size and n′, n′′ the vertex numbers of G ′,G ′′.

8

Computing the kernel II: Efficiently

To compute SUSAN efficiently
• we decompose the contribution of each graph
• this reveals a block structure
• groupping the vertices of equal coreness

• exploit the bounded support
• and reduce computational complexity.

Lemma
The MV operator for SUSAN with bandwidth δ is computable as

A×x = T� (A′′(T� X)A′>)
for T block banded with constant blocks and bandwidth δ, time

O
(
(δ + 1)(n′ + n′′)b2)

for b the largest core size and n′, n′′ the vertex numbers of G ′,G ′′.

8

Computing the kernel II: Efficiently

To compute SUSAN efficiently
• we decompose the contribution of each graph
• this reveals a block structure
• groupping the vertices of equal coreness
• exploit the bounded support

• and reduce computational complexity.

Lemma
The MV operator for SUSAN with bandwidth δ is computable as

A×x = T� (A′′(T� X)A′>)
for T block banded with constant blocks and bandwidth δ, time

O
(
(δ + 1)(n′ + n′′)b2)

for b the largest core size and n′, n′′ the vertex numbers of G ′,G ′′.

8

Computing the kernel II: Efficiently

To compute SUSAN efficiently
• we decompose the contribution of each graph
• this reveals a block structure
• groupping the vertices of equal coreness
• exploit the bounded support
• and reduce computational complexity.

Lemma
The MV operator for SUSAN with bandwidth δ is computable as

A×x = T� (A′′(T� X)A′>)
for T block banded with constant blocks and bandwidth δ, time

O
(
(δ + 1)(n′ + n′′)b2)

for b the largest core size and n′, n′′ the vertex numbers of G ′,G ′′.

8

Results

Time comparison

0.01

0.1

1
geometric

Re
l.

Ti
m

e

0 5 10 15 20
0.1

1
exponential

bandwidth δ

Peking
OHSU
KKI

Relative wall-clock time
(SUSAN vs. näıve)

SUSAN

• outperforms naive computation, especially for small δ.

• (geometric) converges faster for smaller δ.

9

Time comparison

0.01

0.1

1
geometric

Re
l.

Ti
m

e

0 5 10 15 20
0.1

1
exponential

bandwidth δ

Peking
OHSU
KKI

SUSAN

• outperforms naive computation, especially for small δ.

• (geometric) converges faster for smaller δ.

9

Time comparison

0 5 10 15 20

16

18

20
geometric

bandwidth δ

M
at

rix
-V

ec
to

r
op

er
at

io
ns

SUSAN
Unbounded

Number of iterations
until convergence

SUSAN

• outperforms naive computation, especially for small δ.

• (geometric) converges faster for smaller δ.

9

Time comparison

0 5 10 15 20

16

18

20
geometric

bandwidth δ

M
at

rix
-V

ec
to

r
op

er
at

io
ns

SUSAN
Unbounded

Number of iterations
until convergence

SUSAN

• outperforms naive computation, especially for small δ.
• (geometric) converges faster for smaller δ.

9

Conclusion

We study H(0)

H(1)

H(2)

H(3)

H(4)• random walk graph kernels
• weighted vertex alignments

We propose

• coreness as structurally-aware vertex labels
• induce intuitive vertex similarity
• bounded support kernel over coreness

With our work

• close the gap between loose and strict alignment constraints
• competitive classification accuracy for certain datasets
• efficient iterative scheme for practical variants

10

Conclusion

We study H(0)

H(1)

H(2)

H(3)

H(4)• random walk graph kernels
• weighted vertex alignments

We propose

• coreness as structurally-aware vertex labels
• induce intuitive vertex similarity
• bounded support kernel over coreness

With our work

• close the gap between loose and strict alignment constraints
• competitive classification accuracy for certain datasets
• efficient iterative scheme for practical variants

10

Conclusion

We study H(0)

H(1)

H(2)

H(3)

H(4)• random walk graph kernels
• weighted vertex alignments

We propose
• coreness as structurally-aware vertex labels

• induce intuitive vertex similarity
• bounded support kernel over coreness

With our work

• close the gap between loose and strict alignment constraints
• competitive classification accuracy for certain datasets
• efficient iterative scheme for practical variants

10

Conclusion

We study H(0)

H(1)

H(2)

H(3)

H(4)• random walk graph kernels
• weighted vertex alignments

We propose
• coreness as structurally-aware vertex labels
• induce intuitive vertex similarity

• bounded support kernel over coreness

With our work

• close the gap between loose and strict alignment constraints
• competitive classification accuracy for certain datasets
• efficient iterative scheme for practical variants

10

Conclusion

We study H(0)

H(1)

H(2)

H(3)

H(4)• random walk graph kernels
• weighted vertex alignments

We propose
• coreness as structurally-aware vertex labels
• induce intuitive vertex similarity
• bounded support kernel over coreness

With our work

• close the gap between loose and strict alignment constraints
• competitive classification accuracy for certain datasets
• efficient iterative scheme for practical variants

10

Conclusion

We study H(0)

H(1)

H(2)

H(3)

H(4)• random walk graph kernels
• weighted vertex alignments

We propose
• coreness as structurally-aware vertex labels
• induce intuitive vertex similarity
• bounded support kernel over coreness

With our work

• close the gap between loose and strict alignment constraints
• competitive classification accuracy for certain datasets
• efficient iterative scheme for practical variants

10

Conclusion

We study H(0)

H(1)

H(2)

H(3)

H(4)• random walk graph kernels
• weighted vertex alignments

We propose
• coreness as structurally-aware vertex labels
• induce intuitive vertex similarity
• bounded support kernel over coreness

With our work
• close the gap between loose and strict alignment constraints

• competitive classification accuracy for certain datasets
• efficient iterative scheme for practical variants

10

Conclusion

We study H(0)

H(1)

H(2)

H(3)

H(4)• random walk graph kernels
• weighted vertex alignments

We propose
• coreness as structurally-aware vertex labels
• induce intuitive vertex similarity
• bounded support kernel over coreness

With our work
• close the gap between loose and strict alignment constraints
• competitive classification accuracy for certain datasets

• efficient iterative scheme for practical variants

10

Conclusion

We study H(0)

H(1)

H(2)

H(3)

H(4)• random walk graph kernels
• weighted vertex alignments

We propose
• coreness as structurally-aware vertex labels
• induce intuitive vertex similarity
• bounded support kernel over coreness

With our work
• close the gap between loose and strict alignment constraints
• competitive classification accuracy for certain datasets
• efficient iterative scheme for practical variants

10

Conclusion Thank you!

We study H(0)

H(1)

H(2)

H(3)

H(4)• random walk graph kernels
• weighted vertex alignments

We propose
• coreness as structurally-aware vertex labels
• induce intuitive vertex similarity
• bounded support kernel over coreness

With our work
• close the gap between loose and strict alignment constraints
• competitive classification accuracy for certain datasets
• efficient iterative scheme for practical variants

10

References i

Al-Mohy, A. H. and Higham, N. J. (2011).
Computing the Action of the Matrix Exponential, with
an Application to Exponential Integrators.
SIAM J. Sci. Comp.
Batagelj, V. and Zaversnik, M. (2003).
An O(m) Algorithm for Cores Decomposition of
Networks.
arXiv:cs/0310049.

References ii

Gärtner, T., Flach, P., and Wrobel, S. (2003).
On Graph Kernels: Hardness Results and Efficient
Alternatives.
In Learning Theory and Kernel Machines.
Shin, K., Eliassi-Rad, T., and Faloutsos, C. (2016).
CoreScope: Graph Mining Using k-Core
Analysis—Patterns, Anomalies and Algorithms.
In Data Mining (ICDM), 2016 IEEE 16th International
Conference On, pages 469–478. IEEE.

	Results
	Appendix

