SUSAN: The Structural Similarity Random Walk Kernel

Janis Kalofolias, Pascal Welke, Jilles Vreeken

Comparing graphs

Applications

Machine learning methods

Standard Tools

Comparing graphs

Applications

Classification, Regression, Clustering, Dim. Reduction

Comparing graphs

Applications

Classification, Regression, Clustering, Dim. Reduction

Machine learning methods

Standard Tools

SVM, Logistic, K-Means, PCR

Comparing graphs

Applications

Classification, Regression, Clustering, Dim. Reduction

Machine learning methods

Standard Tools

 SVM, Logistic, K-Means, PCRCan we apply standard tools on graphs?

Comparing graphs

Applications

Classification, Regression, Clustering, Dim. Reduction

Non-vectorial data

Machine learning methods

Standard Tools SVM, Logistic, K-Means, PCR

Need vector data

Can we apply standard tools on graphs?

Comparing graphs

Applications

Classification, Regression, Clustering, Dim. Reduction

Machine learning methods

Standard Tools SVM, Logistic, K-Means, PCR

Need vector data
Can we apply standard tools on graphs?

Comparing graphs

Applications

Classification, Regression, Clustering, Dim. Reduction

Non-vectorial data

Machine learning methods

Standard Tools SVM, Logistic, K-Means, PCR

Need vector data

Can we apply standard tools on graphs?

Comparing graphs

Applications

Classification, Regression, Clustering, Dim. Reduction

Non-vectorial data

Machine learning methods

Standard Tools SVM, Logistic, K-Means, PCR

Need vector data

Can we apply standard tools on graphs?

Comparing graphs

Applications

Classification, Regression, Clustering, Dim. Reduction

Non-vectorial data

Machine learning methods

Standard Tools SVM, Logistic, K-Means, PCR

Need vector data

Can we apply standard tools on graphs?
\Longrightarrow Use a kernel on graphs

How do kernels compare graphs?

How do kernels compare graphs?

Goal: Can we define something like $\left\langle G_{1}, G_{2}\right\rangle$?

How do kernels compare graphs?

Goal: Can we define something like $\left\langle G_{1}, G_{2}\right\rangle$?

Kernels define a space \mathcal{H} with $\langle\cdot, \cdot\rangle$ and mapping function ϕ

How do kernels compare graphs?

Goal: Can we define something like $\left\langle G_{1}, G_{2}\right\rangle$?

Kernels define a space \mathcal{H} with $\langle\cdot, \cdot\rangle$ and mapping function ϕ

How do kernels compare graphs?

Goal: Can we define something like $\left\langle G_{1}, G_{2}\right\rangle$?

Kernels define a space \mathcal{H} with $\langle\cdot, \cdot\rangle$ and mapping function ϕ

How do kernels compare graphs?

Goal: Can we define something like $\left\langle G_{1}, G_{2}\right\rangle$?

Kernels define a space \mathcal{H} with $\langle\cdot, \cdot\rangle$ and mapping function ϕ
\Longrightarrow Use as graph similarity

$$
G_{1}, \quad G_{2}
$$

How do kernels compare graphs?

Goal: Can we define something like $\left\langle G_{1}, G_{2}\right\rangle$?

Kernels define a space \mathcal{H} with $\langle\cdot, \cdot\rangle$ and mapping function ϕ
\Longrightarrow Use as graph similarity

$$
\phi\left(G_{1}\right), \phi\left(G_{2}\right)
$$

How do kernels compare graphs?

Goal: Can we define something like $\left\langle G_{1}, G_{2}\right\rangle$?

Kernels define a space \mathcal{H} with $\langle\cdot, \cdot\rangle$ and mapping function ϕ
\Longrightarrow Use as graph similarity $\left\langle\phi\left(G_{1}\right), \phi\left(G_{2}\right)\right\rangle_{\mathcal{H}}$

How do kernels compare graphs?

Goal: Can we define something like $\left\langle G_{1}, G_{2}\right\rangle$?

Kernels define a space \mathcal{H} with $\langle\cdot, \cdot\rangle$ and mapping function ϕ
\Longrightarrow Use as graph similarity
$k\left(G_{1}, G_{2}\right):=\left\langle\phi\left(G_{1}\right), \phi\left(G_{2}\right)\right\rangle_{\mathcal{H}}$

How do kernels compare graphs?

Goal: Can we define something like $\left\langle G_{1}, G_{2}\right\rangle$?

Kernels define a space \mathcal{H} with $\langle\cdot, \cdot\rangle$ and mapping function ϕ
\Longrightarrow Use as graph similarity

$$
k\left(G_{1}, G_{2}\right):=\left\langle\phi\left(G_{1}\right), \phi\left(G_{2}\right)\right\rangle_{\mathcal{H}}
$$

How do kernels compare graphs?

Goal: Can we define something like $\left\langle G_{1}, G_{2}\right\rangle$?

Kernels define a space \mathcal{H} with $\langle\cdot, \cdot\rangle$ and mapping function ϕ
\Longrightarrow Use as graph similarity

$$
k\left(G_{1}, G_{2}\right):=\left\langle\phi\left(G_{1}\right), \phi\left(G_{2}\right)\right\rangle_{\mathcal{H}}
$$

We focus on Random Walk kernels

ex: 3-step walk: $(1,2,3,4)$

ex: 3-step walk: $(1,2,3,4)$

Goal: Count graph walks
\# 1-step walks from 1, 3 ?

$$
\underbrace{\left[\begin{array}{l}
0 \\
2 \\
0 \\
1
\end{array}\right]}_{x_{1}}=\underbrace{\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]}_{x_{0}}
$$

\# 1-step walks from 1,3 ?

$$
\underbrace{\left[\begin{array}{l}
0 \\
2 \\
0 \\
1
\end{array}\right]}_{x_{1}}=\underbrace{\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]}_{x_{0}}
$$

\# 1-step walks from 1,3 ?

$$
\underbrace{\left[\begin{array}{l}
0 \\
2 \\
1 \\
0
\end{array}\right]}_{x_{1}}=\underbrace{\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]}_{x_{0}}
$$

\# 1-step walks from 1,3 ?

$$
\underbrace{\left[\begin{array}{l}
0 \\
2 \\
0 \\
1
\end{array}\right]}_{x_{1}}=\underbrace{\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]}_{x_{0}}
$$

Goal: Count graph walks
\# 1-step walks from 1, 3 ?

$$
\underbrace{\left[\begin{array}{l}
0 \\
2 \\
0 \\
1
\end{array}\right]}_{x_{1}}=\underbrace{\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]}_{x_{0}}
$$

\#k-step walks from x_{0} ?

$$
x_{k}=A^{k} x_{0}
$$

Random Walk (Reproducing) Kernels

[Gärtner et al., 2003]

((8) Goal: Count graph walks

But: in 2 graphs?

Random Walk (Reproducing) Kernels

[Gärtner et al., 2003]

Goal: Count common walks

But: in 2 graphs?

- Assume vertex alignment e.g.: $a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$

Goal: Count common walks

But: in 2 graphs?

- Assume vertex alignment e.g.: $a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$
- Create alignment graph

Goal: Count common walks

But: in 2 graphs?

- Assume vertex alignment e.g.: $a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$
- Create alignment graph

Goal: Count common walks

But: in 2 graphs?

- Assume vertex alignment e.g.: $a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$
- Create alignment graph

Goal: Count common walks

But: in 2 graphs?

- Assume vertex alignment e.g.: $a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$
- Create alignment graph

Goal: Count common walks

But: in 2 graphs?

- Assume vertex alignment e.g.: $a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$
- Create alignment graph

Goal: Count common walks

But: in 2 graphs?

- Assume vertex alignment e.g.: $a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$
- Create alignment graph

Goal: Count common walks

But: in 2 graphs?

- Assume vertex alignment e.g.: $a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$
- Create alignment graph
- Walk in alignment graph e.g.: $b \equiv 2, c \equiv 3, d \equiv 4, b \equiv 2$

Goal: Count common walks

But: in 2 graphs?

- Assume vertex alignment e.g.: $a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$
- Create alignment graph
- Walk in alignment graph

$$
\text { e.g.: } b \equiv 2, c \equiv 3, d \equiv 4, b \equiv 2
$$

But: Alignments are rarely available

((8) Goal: Count common walks

But: in 2 graphs?

- Assume vertex alignment e.g.: $a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$
- Create alignment graph
- Walk in alignment graph e.g.: $b \equiv 2, c \equiv 3, d \equiv 4, b \equiv 2$

But: Alignments are rarely available
\Longrightarrow Use all possible alignments

Direct product graph:

$$
A_{\times}=A \otimes A^{\prime}
$$

Goal: Count common walks

But: in 2 graphs?

- Assume vertex alignment e.g.: $a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4$
- Create alignment graph
- Walk in alignment graph

$$
\text { e.g.: } b \equiv 2, c \equiv 3, d \equiv 4, b \equiv 2
$$

But: Alignments are rarely available
\Longrightarrow Use all possible alignments

Random Walk (Reproducing) Kernels

Direct product graph:

$$
A_{\times}=A \otimes A^{\prime}
$$

$$
A_{\times} x_{x}=(A x) \otimes\left(A^{\prime} x^{\prime}\right)
$$

Goal: Count common walks

But: in 2 graphs?

- Assume vertex alignment

$$
\text { e.g. }: a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4
$$

- Create alignment graph
- Walk in alignment graph

$$
\text { e.g.: } b \equiv 2, c \equiv 3, d \equiv 4, b \equiv 2
$$

But: Alignments are rarely available
\Longrightarrow Use all possible alignments

Direct product graph:

$$
A_{\times}=A \otimes A^{\prime}
$$

$A_{\times} x_{\times}=(A x) \otimes\left(A^{\prime} x^{\prime}\right)$

Goal: Count common walks

But: in 2 graphs?

- Assume vertex alignment

$$
\text { e.g.: } a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4
$$

- Create alignment graph
- Walk in alignment graph

$$
\text { e.g.: } b \equiv 2, c \equiv 3, d \equiv 4, b \equiv 2
$$

But: Alignments are rarely available
\Longrightarrow Use all possible alignments
But: If vertices are not similar?

Direct product graph:

$$
A_{\times}=A \otimes A^{\prime}
$$

$A_{\times} x_{\times}=(A x) \otimes\left(A^{\prime} x^{\prime}\right)$

Goal: Count common walks

But: in 2 graphs?

- Assume vertex alignment

$$
\text { e.g.: } a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4
$$

- Create alignment graph
- Walk in alignment graph

$$
\text { e.g.: } b \equiv 2, c \equiv 3, d \equiv 4, b \equiv 2
$$

But: Alignments are rarely available
\Longrightarrow Use all possible alignments
But: If vertices are not similar?

Direct product graph:

$$
\begin{gathered}
A_{\times}=A \otimes A^{\prime} \\
A_{\times} x_{\times}=(A x) \otimes\left(A^{\prime} x^{\prime}\right)
\end{gathered}
$$

Goal: Count common walks

But: in 2 graphs?

- Assume vertex alignment

$$
\text { e.g.: } a \equiv 1, b \equiv 2, c \equiv 3, d \equiv 4
$$

- Create alignment graph
- Walk in alignment graph

$$
\text { e.g.: } b \equiv 2, c \equiv 3, d \equiv 4, b \equiv 2
$$

But: Alignments are rarely available
\Longrightarrow Use all possible alignments
But: If vertices are not similar?
\Longrightarrow Not all alignments equally good

Are all vertex alignments equally good?

- Dissimilar vertices can be noisy
- Do not contribute to similarity

Are all vertex alignments equally good?

- Dissimilar vertices can be noisy
\Longrightarrow Only match similar vertices
- Do not contribute to similarity

Are all vertex alignments equally good?

- Dissimilar vertices can be noisy
\Longrightarrow Only match similar vertices
- Do not contribute to similarity

Labeled vertices

\checkmark same label \Rightarrow similar vertices

Are all vertex alignments equally good?

- Dissimilar vertices can be noisy
\Longrightarrow Only match similar vertices
- Do not contribute to similarity

Labeled vertices

\checkmark same label \Rightarrow similar vertices
$X G_{2}$ has no O. What now?
X How close is C to H ?

Are all vertex alignments equally good?

- Dissimilar vertices can be noisy
- Do not contribute to similarity

Labeled vertices

\checkmark same label \Rightarrow similar vertices
$X \quad G_{2}$ has no O. What now?
X How close is C to H ?
\Longrightarrow Only match similar vertices

Unlabeled graphs

\checkmark many similarity measures
X not always clear or easy

Are all vertex alignments equally good?

- Dissimilar vertices can be noisy
- Do not contribute to similarity

Labeled vertices

\checkmark same label \Rightarrow similar vertices
$X \quad G_{2}$ has no O. What now?
X How close is C to H ?
\Longrightarrow Only match similar vertices

Unlabeled graphs

\checkmark many similarity measures
X not always clear or easy

We seek a vertex partitioning

- structurally aware
- efficient to compute
- defines partition similarity

Are all vertex alignments equally good?

- Dissimilar vertices can be noisy
- Do not contribute to similarity

Labeled vertices

\checkmark same label \Rightarrow similar vertices
$X \quad G_{2}$ has no O. What now?
X How close is C to H ?

We seek a vertex partitioning

- structurally aware
- efficient to compute
- defines partition similarity
\Longrightarrow Only match similar vertices

Unlabeled graphs

\checkmark many similarity measures
X not always clear or easy

We propose to use
\Longrightarrow core decomposition

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example

Decomposition: $\kappa: V \rightarrow \mathbb{N}$

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example

Definition (vertex coreness)
 $$
\kappa(u):=\max _{u \in H(k)} k
$$

Decomposition: $\kappa: V \rightarrow \mathbb{N}$

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example

Definition (vertex coreness)

$$
\kappa(u):=\max _{u \in H(k)} k
$$

Decomposition: $\kappa: V \rightarrow \mathbb{N}$

- k-core vertices have similar structure
[Shin et al., 2016]

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example

Definition (vertex coreness)
 $$
\kappa(u):=\max _{u \in H(k)} k
$$

Decomposition: $\kappa: V \rightarrow \mathbb{N}$

- k-core vertices have similar structure
[Shin et al., 2016]
- Needs only $O(n)$.
[Batagelj and Zaversnik, 2003]

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example

Definition (vertex coreness)
 $$
\kappa(u):=\max _{u \in H(k)} k
$$

Decomposition: $\kappa: V \rightarrow \mathbb{N}$

- k-core vertices have similar structure
[Shin et al., 2016]
- Needs only $O(n)$.
[Batagelj and Zaversnik, 2003]
- Intuitive comparison between labels

Random Walk (Reproducing) Kernels

[Gärtner et al., 2003]

Random Walk (Reproducing) Kernels

[Gärtner et al., 2003]

Use core values as integer labels and/or existing labels

Random Walk (Reproducing) Kernels

[Gärtner et al., 2003]

Use core values as integer labels and/or existing labels
close integers \Longleftrightarrow similar structure

Random Walk (Reproducing) Kernels

[Gärtner et al., 2003]

Use core values as integer labels and/or existing labels close integers \Longleftrightarrow similar structure alignment similarity from label kernel

Random Walk (Reproducing) Kernels

[Gärtner et al., 2003]

(Cf) Goal: Count similar walks

Use core values as integer labels and/or existing labels close integers \Longleftrightarrow similar structure alignment similarity from label kernel

Use kernel over \mathbb{Z}
$k_{\delta}\left(I, I^{\prime}\right):=\max \left(0,1-\frac{\left|I-I^{\prime}\right|}{\delta+1}\right)$
where δ : bounded support

Random Walk (Reproducing) Kernels

[Gärtner et al., 2003]

(Cf) Goal: Count similar walks

Use core values as integer labels and/or existing labels close integers \Longleftrightarrow similar structure alignment similarity from label kernel Depending on δ :

Use kernel over \mathbb{Z}
$k_{\delta}\left(I, I^{\prime}\right):=\max \left(0,1-\frac{\left|I-I^{\prime}\right|}{\delta+1}\right)$
where δ : bounded support

Random Walk (Reproducing) Kernels

[Gärtner et al., 2003]

(Cf) Goal: Count similar walks

Use core values as integer labels and/or existing labels close integers \Longleftrightarrow similar structure alignment similarity from label kernel Depending on δ :

- $\delta=\infty$
vanilla RW too loose

Use kernel over \mathbb{Z}
$k_{\delta}\left(I, I^{\prime}\right):=\max \left(0,1-\frac{\left|I-l^{\prime}\right|}{\delta+1}\right)$
where δ : bounded support

Random Walk (Reproducing) Kernels

[Gärtner et al., 2003]

(Cf) Goal: Count similar walks

Use core values as integer labels and/or existing labels close integers \Longleftrightarrow similar structure alignment similarity from label kernel Depending on δ :

- $\delta=\infty$
vanilla RW too loose

Use kernel over \mathbb{Z}
$k_{\delta}\left(I, I^{\prime}\right):=\max \left(0,1-\frac{\left|I-l^{\prime}\right|}{\delta+1}\right)$
where δ : bounded support

Random Walk (Reproducing) Kernels

Use kernel over \mathbb{Z}
$k_{\delta}\left(I, I^{\prime}\right):=\max \left(0,1-\frac{\left|I-I^{\prime}\right|}{\delta+1}\right)$
where δ : bounded support

Goal: Count similar walks

Use core values as integer labels and/or existing labels close integers \Longleftrightarrow similar structure alignment similarity from label kernel
Depending on δ :

- $\delta=\infty$
vanilla RW
too loose
- $\delta=0$ [Gärtner et al., 2003] too strict

Random Walk (Reproducing) Kernels

Use kernel over \mathbb{Z}
$k_{\delta}\left(I, I^{\prime}\right):=\max \left(0,1-\frac{\left|I-l^{\prime}\right|}{\delta+1}\right)$
where δ : bounded support

Goal: Count similar walks

Use core values as integer labels and/or existing labels close integers \Longleftrightarrow similar structure alignment similarity from label kernel
Depending on δ :

- $\delta=\infty$
vanilla RW
too loose
- $\delta=0$ [Gärtner et al., 2003] too strict

Use kernel over \mathbb{Z}
$k_{\delta}\left(I, I^{\prime}\right):=\max \left(0,1-\frac{\left|I-I^{\prime}\right|}{\delta+1}\right)$
where δ : bounded support

Use core values as integer labels and/or existing labels close integers \Longleftrightarrow similar structure alignment similarity from label kernel
Depending on δ :

- $\delta=\infty$
vanilla RW
too loose
- $\delta=0 \quad$ [Gärtner et al., 2003] too strict
- $\delta \in \mathbb{R}_{+}$ adaptive! e.g.: 0,0.5,1,1.5,2

Use kernel over \mathbb{Z}
$k_{\delta}\left(I, I^{\prime}\right):=\max \left(0,1-\frac{\left|I-I^{\prime}\right|}{\delta+1}\right)$
where δ : bounded support

Use core values as integer labels and/or existing labels close integers \Longleftrightarrow similar structure alignment similarity from label kernel
Depending on δ :

- $\delta=\infty$
vanilla RW
too loose
- $\delta=0 \quad$ [Gärtner et al., 2003] too strict
- $\delta \in \mathbb{R}_{+}$ adaptive! e.g.: 0,0.5,1,1.5,2

Random Walk (Reproducing) Kernels

Use kernel over \mathbb{Z}
$k_{\delta}\left(I, I^{\prime}\right):=\max \left(0,1-\frac{\left|I-l^{\prime}\right|}{\delta+1}\right)$
where δ : bounded support

Use core values as integer labels and/or existing labels close integers \Longleftrightarrow similar structure alignment similarity from label kernel
Depending on δ :

- $\delta=\infty$
vanilla $R W$ too loose
- $\delta=0 \quad$ [Gärtner et al., 2003] too strict
- $\delta \in \mathbb{R}_{+}$ SUSAN adaptive! e.g.: 0,0.5,1,1.5,2

Random Walk (Reproducing) Kernels

[Gärtner et al., 2003]

Use kernel over \mathbb{Z}
$k_{\delta}\left(I, I^{\prime}\right):=\max \left(0,1-\frac{\left|I-l^{\prime}\right|}{\delta+1}\right)$
where δ : bounded support

Use core values as integer labels and/or existing labels close integers \Longleftrightarrow similar structure alignment similarity from label kernel
Depending on δ :

- $\delta=\infty$
vanilla $R W$ too loose
- $\delta=0 \quad$ [Gärtner et al., 2003] too strict
- $\delta \in \mathbb{R}_{+}$ SUSAN adaptive!
e.g.: 0,0.5,1,1.5,2

Random Walk (Reproducing) Kernels

[Gärtner et al., 2003]

Use kernel over \mathbb{Z}
$k_{\delta}\left(I, I^{\prime}\right):=\max \left(0,1-\frac{\left|I-l^{\prime}\right|}{\delta+1}\right)$
where δ : bounded support

Use core values as integer labels and/or existing labels close integers \Longleftrightarrow similar structure alignment similarity from label kernel
Depending on δ :

- $\delta=\infty$
vanilla $R W$ too loose
- $\delta=0 \quad$ [Gärtner et al., 2003] too strict
- $\delta \in \mathbb{R}_{+}$ SUSAN adaptive! e.g.: 0,0.5,1,1.5,2

Use kernel over \mathbb{Z}
$k_{\delta}\left(I, I^{\prime}\right):=\max \left(0,1-\frac{\left|I-I^{\prime}\right|}{\delta+1}\right)$
where δ : bounded support

Use core values as integer labels and/or existing labels close integers \Longleftrightarrow similar structure alignment similarity from label kernel
Depending on δ :

- $\delta=\infty$
vanilla RW
too loose
- $\delta=0 \quad$ [Gärtner et al., 2003] too strict
- $\delta \in \mathbb{R}_{+}$ SUSAN adaptive! e.g.: 0,0.5,1,1.5,2

Computing the Kernel II

Finally: sum \# common walks:

- of any \# steps (with weight μ_{n})
- from each vertex to every other

$$
k\left(G_{1}, G_{2}\right)=\mathbf{e}^{\top} \underbrace{\sum_{n=0}^{\infty} \mu_{n} \mathbf{A}_{\times}^{n} \mathbf{e}}
$$

Computing the Kernel II

Finally: sum \# common walks:

- of any \# steps (with weight μ_{n})
- from each vertex to every other

$$
k\left(G_{1}, G_{2}\right)=\mathbf{e}^{\top} \underbrace{\sum_{n=0}^{\infty} \mu_{n} \mathbf{A}_{\times}^{n} \mathbf{e}}
$$

Computing the Kernel II

Finally: sum \# common walks:

- of any \# steps (with weight μ_{n})
- from each vertex to every other

$$
k\left(G_{1}, G_{2}\right)=\underbrace{\mathbf{e}^{\top} \underbrace{\sum_{n=0}^{\infty} \mu_{n} \mathbf{A}_{\times}^{n}} \mathbf{e}}
$$

Computing the Kernel II

Finally: sum \# common walks:

- of any \# steps (with weight μ_{n})
- from each vertex to every other

$$
k\left(G_{1}, G_{2}\right)=\underbrace{\mathbf{e}^{\top} \underbrace{\sum_{n=0}^{\infty} \mu_{n} \mathbf{A}_{\times}^{n} \mathrm{e}}}
$$

Computing the Kernel II

Finally: sum \# common walks:

- of any \# steps (with weight μ_{n})
- from each vertex to every other

$$
k\left(G_{1}, G_{2}\right)=\mathrm{e}^{\top} \underbrace{\sum_{n=0}^{\infty} \mu_{n} \mathbf{A}_{\times}^{n} \mathbf{e}}
$$

Computing the Kernel II

Finally: sum \# common walks:

- of any \# steps (with weight μ_{n})
- from each vertex to every other

$$
k\left(G_{1}, G_{2}\right)=\mathbf{e}^{\top} \underbrace{\sum_{n=0}^{\infty} \mu_{n} \mathbf{A}_{\times}^{n} \mathbf{e}}
$$

Practical weights μ give:

- Geometric: $\mathbf{B}_{g}=\left(I-\lambda \mathbf{A}_{\times}\right)^{-1} \mathbf{e}$
- Exponential: $\mathbf{B}_{e}=\exp \left(\mathbf{A}_{\times}\right) \mathbf{e}$

Computing the Kernel II

Finally: sum \# common walks:

- of any \# steps (with weight μ_{n})
- from each vertex to every other

$$
k\left(G_{1}, G_{2}\right)=\mathbf{e}^{\top} \underbrace{\sum_{n=0}^{\infty} \mu_{n} \mathbf{A}_{\times}^{n} \mathbf{e}}
$$

Practical weights μ give:

- Geometric: $\mathbf{B}_{g}=\left(I-\lambda \mathbf{A}_{\times}\right)^{-1} \mathbf{e}$
- Exponential: $\mathbf{B}_{e}=\exp \left(\mathbf{A}_{\times}\right) \mathbf{e}$
\Longrightarrow computable as matrix vector (MV) operations with \mathbf{A}_{\times}

Computing the Kernel II

Finally: sum \# common walks:

- of any \# steps (with weight μ_{n})
- from each vertex to every other

$$
k\left(G_{1}, G_{2}\right)=\mathbf{e}^{\top} \underbrace{\sum_{n=0}^{\infty} \mu_{n} \mathbf{A}_{\times}^{n} \mathbf{e}}_{\mathbf{B}}
$$

Practical weights μ give:

- Geometric: $\mathbf{B}_{g}=\left(I-\lambda \mathbf{A}_{\times}\right)^{-1} \mathbf{e}$
- Exponential: $\mathbf{B}_{e}=\exp \left(\mathbf{A}_{\times}\right) \mathbf{e}$

Conjugate Gradient
[Al-Mohy and Higham, 2011]
\Longrightarrow computable as matrix vector (MV) operations with \mathbf{A}_{\times}
But: How do we compute the MV operations efficiently?

Computing the kernel II:

To compute SUSAN efficiently

Computing the kernel II:

To compute SUSAN efficiently

Lemma
The MV operator for SUSAN with bandwidth δ is computable as

$$
\mathbf{A}_{\times} x=\mathbf{T} \odot\left(\mathbf{A}^{\prime \prime}(\mathbf{T} \odot \mathbf{X}) \mathbf{A}^{\prime \top}\right)
$$

for \mathbf{T} block banded with constant blocks and bandwidth δ, time

$$
O\left((\delta+1)\left(n^{\prime}+n^{\prime \prime}\right) b^{2}\right)
$$

for b the largest core size and $n^{\prime}, n^{\prime \prime}$ the vertex numbers of $G^{\prime}, G^{\prime \prime}$.

Computing the kernel II:

To compute SUSAN efficiently

- we decompose the contribution of each graph

Lemma

The MV operator for SUSAN with bandwidth δ is computable as

$$
\mathbf{A}_{\times} x=\mathbf{T} \odot\left(\mathbf{A}^{\prime \prime}(\mathbf{T} \odot \mathbf{X}) \mathbf{A}^{\prime \top}\right)
$$

for \mathbf{T} block banded with constant blocks and bandwidth δ, time

$$
O\left((\delta+1)\left(n^{\prime}+n^{\prime \prime}\right) b^{2}\right)
$$

for b the largest core size and $n^{\prime}, n^{\prime \prime}$ the vertex numbers of $G^{\prime}, G^{\prime \prime}$.

Computing the kernel II:

Efficiently

To compute SUSAN efficiently

- we decompose the contribution of each graph
- this reveals a block structure

Lemma

The MV operator for SUSAN with bandwidth δ is computable as

$$
\mathbf{A}_{\times} x=\mathbf{T} \odot\left(\mathbf{A}^{\prime \prime}(\mathbf{T} \odot \mathbf{X}) \mathbf{A}^{\prime \top}\right)
$$

for \mathbf{T} block banded with constant blocks and bandwidth δ, time

$$
O\left((\delta+1)\left(n^{\prime}+n^{\prime \prime}\right) b^{2}\right)
$$

for b the largest core size and $n^{\prime}, n^{\prime \prime}$ the vertex numbers of $G^{\prime}, G^{\prime \prime}$.

Computing the kernel II:

Efficiently

To compute SUSAN efficiently

- we decompose the contribution of each graph
- this reveals a block structure
- groupping the vertices of equal coreness

Lemma

The MV operator for SUSAN with bandwidth δ is computable as

$$
\mathbf{A}_{\times} x=\mathbf{T} \odot\left(\mathbf{A}^{\prime \prime}(\mathbf{T} \odot \mathbf{X}) \mathbf{A}^{\prime \top}\right)
$$

for \mathbf{T} block banded with constant blocks and bandwidth δ, time

$$
O\left((\delta+1)\left(n^{\prime}+n^{\prime \prime}\right) b^{2}\right)
$$

for b the largest core size and $n^{\prime}, n^{\prime \prime}$ the vertex numbers of $G^{\prime}, G^{\prime \prime}$.

Computing the kernel II:

Efficiently

To compute SUSAN efficiently

- we decompose the contribution of each graph
- this reveals a block structure
- groupping the vertices of equal coreness
- exploit the bounded support

Lemma

The MV operator for SUSAN with bandwidth δ is computable as

$$
\mathbf{A}_{\times} x=\mathbf{T} \odot\left(\mathbf{A}^{\prime \prime}(\mathbf{T} \odot \mathbf{X}) \mathbf{A}^{\prime \top}\right)
$$

for \mathbf{T} block banded with constant blocks and bandwidth δ, time

$$
O\left((\delta+1)\left(n^{\prime}+n^{\prime \prime}\right) b^{2}\right)
$$

for b the largest core size and $n^{\prime}, n^{\prime \prime}$ the vertex numbers of $G^{\prime}, G^{\prime \prime}$.

Computing the kernel II:

Efficiently

To compute SUSAN efficiently

- we decompose the contribution of each graph
- this reveals a block structure
- groupping the vertices of equal coreness
- exploit the bounded support
- and reduce computational complexity.

Lemma

The MV operator for SUSAN with bandwidth δ is computable as

$$
\mathbf{A}_{\times} x=\mathbf{T} \odot\left(\mathbf{A}^{\prime \prime}(\mathbf{T} \odot \mathbf{X}) \mathbf{A}^{\prime \top}\right)
$$

for \mathbf{T} block banded with constant blocks and bandwidth δ, time

$$
O\left((\delta+1)\left(n^{\prime}+n^{\prime \prime}\right) b^{2}\right)
$$

for b the largest core size and $n^{\prime}, n^{\prime \prime}$ the vertex numbers of $G^{\prime}, G^{\prime \prime}$.

Results

Time comparison

Relative wall-clock time

Time comparison

SUSAN

- outperforms naive computation, especially for small δ.

Time comparison

(
 Number of iterations until convergence

SUSAN

- outperforms naive computation, especially for small δ.

Time comparison

Number of iterations until convergence

SUSAN

- outperforms naive computation, especially for small δ.
- (geometric) converges faster for smaller δ.

Conclusion

We study

- random walk graph kernels
- weighted vertex alignments

Conclusion

We study

- random walk graph kernels
- weighted vertex alignments

We propose

Conclusion

We study

- random walk graph kernels
- weighted vertex alignments

We propose

- coreness as structurally-aware vertex labels

Conclusion

We study

- random walk graph kernels
- weighted vertex alignments

We propose

- coreness as structurally-aware vertex labels
- induce intuitive vertex similarity

Conclusion

We study

- random walk graph kernels
- weighted vertex alignments

Conclusion

We study

- random walk graph kernels
- weighted vertex alignments

Conclusion

We study

- random walk graph kernels
- weighted vertex alignments

We propose

- coreness as structurally-aware vertex labels
- induce intuitive vertex similarity
- bounded support kernel over coreness

With our work

- close the gap between loose and strict alignment constraints

Conclusion

We study

- random walk graph kernels
- weighted vertex alignments

We propose

- coreness as structurally-aware vertex labels
- induce intuitive vertex similarity
- bounded support kernel over coreness

With our work

- close the gap between loose and strict alignment constraints
- competitive classification accuracy for certain datasets

Conclusion

We study

- random walk graph kernels
- weighted vertex alignments

We propose

- coreness as structurally-aware vertex labels
- induce intuitive vertex similarity
- bounded support kernel over coreness

With our work

- close the gap between loose and strict alignment constraints
- competitive classification accuracy for certain datasets
- efficient iterative scheme for practical variants

Conclusion

Thank you!

We study

- random walk graph kernels
- weighted vertex alignments

We propose

- coreness as structurally-aware vertex labels
- induce intuitive vertex similarity
- bounded support kernel over coreness

With our work

- close the gap between loose and strict alignment constraints
- competitive classification accuracy for certain datasets
- efficient iterative scheme for practical variants

References i

國 Al-Mohy, A. H. and Higham, N. J. (2011).
Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators.
SIAM J. Sci. Comp.
R
Batagelj, V. and Zaversnik, M. (2003).
An O(m) Algorithm for Cores Decomposition of Networks.
arXiv:cs/0310049.

References if

E Gärtner, T., Flach, P., and Wrobel, S. (2003).
On Graph Kernels: Hardness Results and Efficient Alternatives.
In Learning Theory and Kernel Machines.
Shin, K., Eliassi-Rad, T., and Faloutsos, C. (2016).
CoreScope: Graph Mining Using k-Core
Analysis—Patterns, Anomalies and Algorithms.
In Data Mining (ICDM), 2016 IEEE 16th International
Conference On, pages 469-478. IEEE.

