Graph Pooling Provably Improves Expressivity

Veronica Lachi, Alice Moallemy-Oureh, Andreas Roth, Pascal Welke University of Siena, University of Kassel, TU Dortmund University, TU Wien

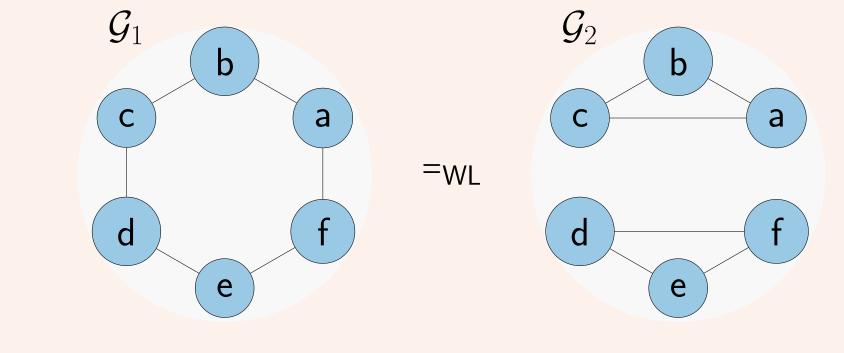
veronica.lachi@student.unisi.it, amoallemy@uni-kassel.de, andreas.roth@tu-dortmund.de, pascal.welke@tuwien.ac.at

Graph Pooling

G↓ SEL

Select can Increase Expressivity

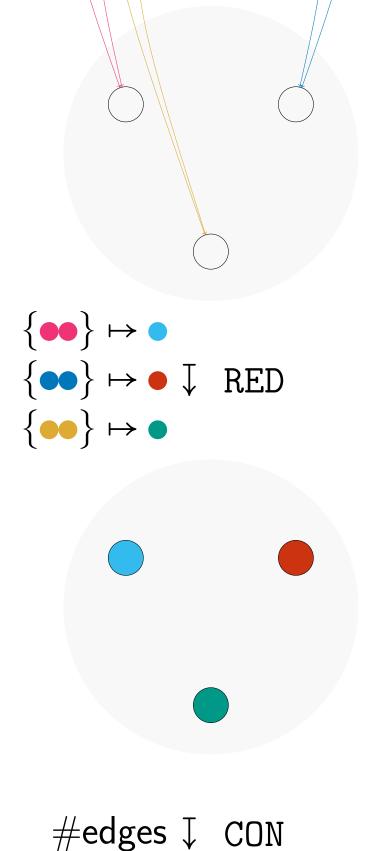
Let SEL distinguish some graphs that WL does not distinguish. Then, POOL can be constructed to increase expressivity.

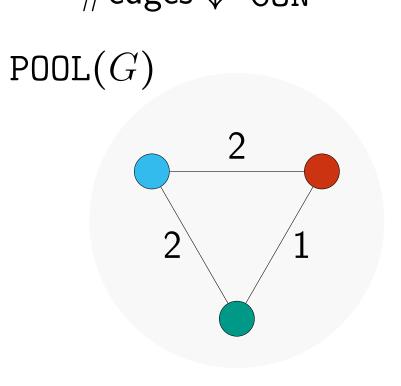


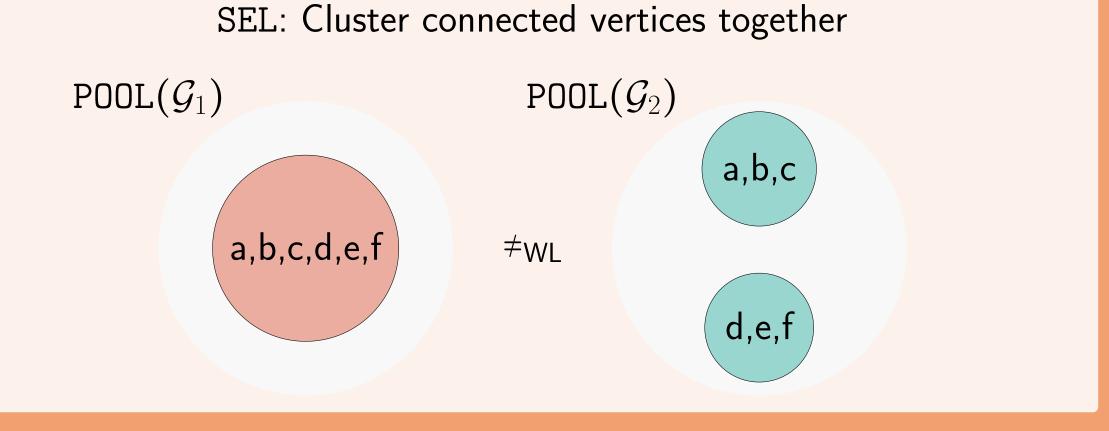
Motivation

- **Graph Pooling** is a powerful technique for reducing a graph's size, enabling GNNs to gradually learn more global information.
- Existing graph pooling methods are observed to either compromise or, at best, maintain the **expressivity** of GNNs, highlighting a critical challenge in the field.
- Are there graph pooling methods that not only preserve but actively **increase** the expressivity of GNNs?

Definitions







Reduce should be Injective

Let RED be an injective function. For any two graphs $\mathcal{G}_1, \mathcal{G}_2$ we have $\operatorname{SEL}(\mathcal{G}_1) \neq \operatorname{SEL}(\mathcal{G}_2) \implies \operatorname{POOL}(\mathcal{G}_1) \neq_{\mathsf{WL}} \operatorname{POOL}(\mathcal{G}_2).$

Connect can Increase Expressivity

Let CON create an edge between two supernodes if any pair of their nodes were connected in the original graph. Then POOL increases expressivity. \mathcal{G}_1

 \mathcal{G}_2

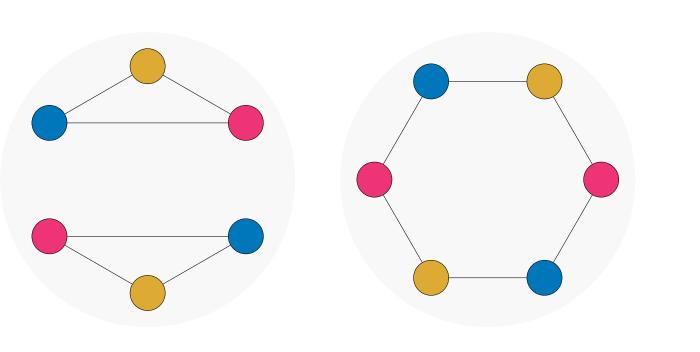
Pooling operator POOL

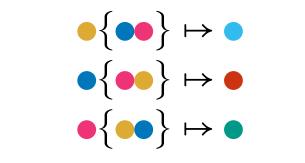
- maps a graph to a potentially smaller graph.
- is permutation invariant: $\mathcal{G}_1 \simeq \mathcal{G}_2 \Rightarrow \text{POOL}(\mathcal{G}_1) \simeq \text{POOL}(\mathcal{G}_2)$
- can be written as a triplet (SEL, RED, CON) of Select-Reduce-Connect functions.
- Select SEL: $\mathcal{G} \mapsto \mathcal{S} = \{\mathcal{S}_1, \ldots, \mathcal{S}_k\}$ clusters the input graph nodes into so-called supernodes $S_j = \{s_i^j\}_{i=1}^N$ where s_i^j indicates the contribution of node i on supernode j.
- Reduce RED aggregates the features of the nodes assigned to the same supernode.
- Connect CON generates the edges and edge features of the resulting graph POOL(G), if applicable, by connecting the supernodes.

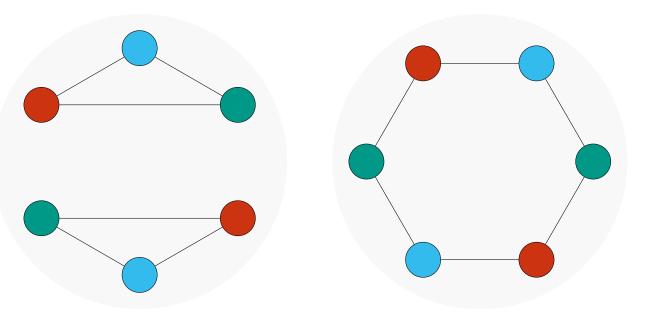
Current Distinguishability Matters

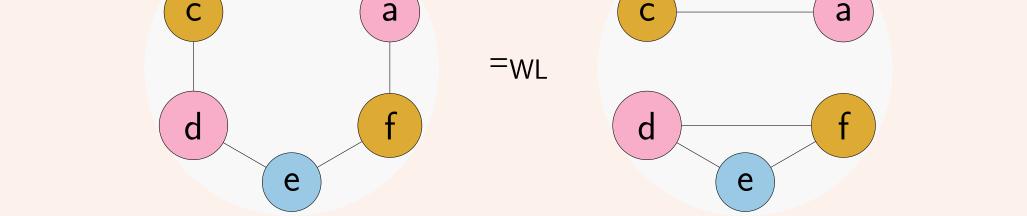
• \mathcal{G}_1 and \mathcal{G}_2 are **WL distinguishable** $(\mathcal{G}_1 \neq_{\mathsf{WL}} \mathcal{G}_2)$ if there exists an iteration t for which $\{c_n^{(t)} : n \in \mathcal{V}_1\} \neq \{c_n^{(t)} : n \in \mathcal{V}_2\}.$ • Two graphs \mathcal{G}_1 and \mathcal{G}_2 are currently WL distinguishable $(\mathcal{G}_1 \neq_{\mathsf{CWL}} \mathcal{G}_2)$ if their color multisets are currently different.

WL Test

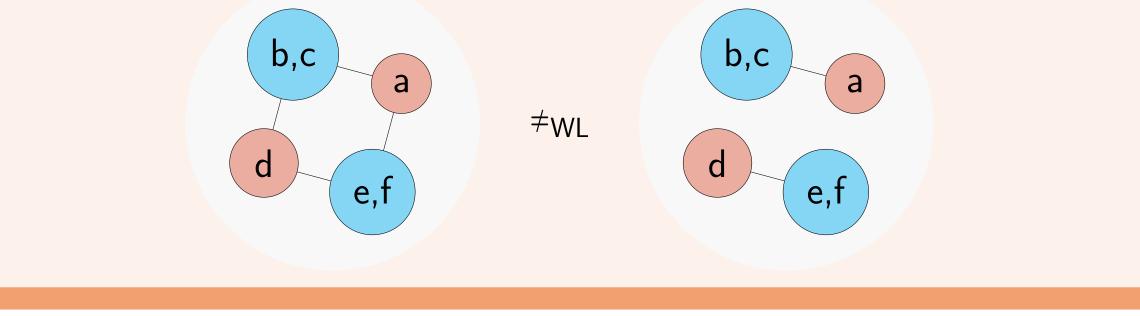




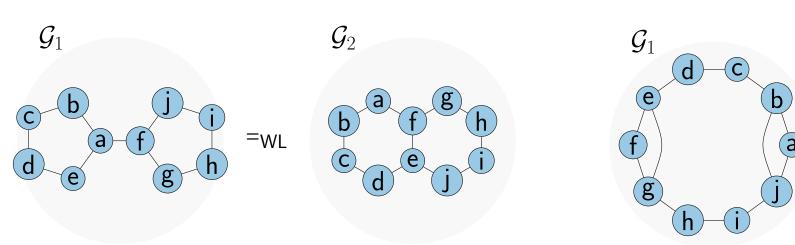




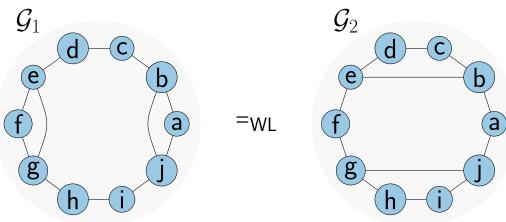
SEL: Cluster connected {blue, cyan} and {green} vertices together CON: Add an edge between supernodes if constituents were connected $\texttt{POOL}(\mathcal{G}_1)$ $\texttt{POOL}(\mathcal{G}_2)$

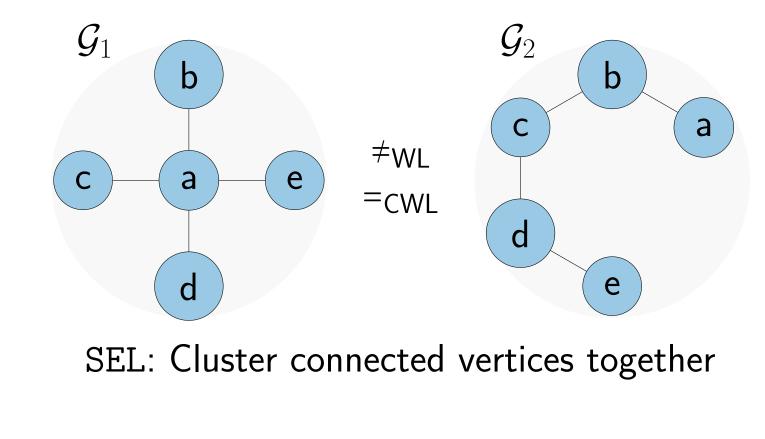


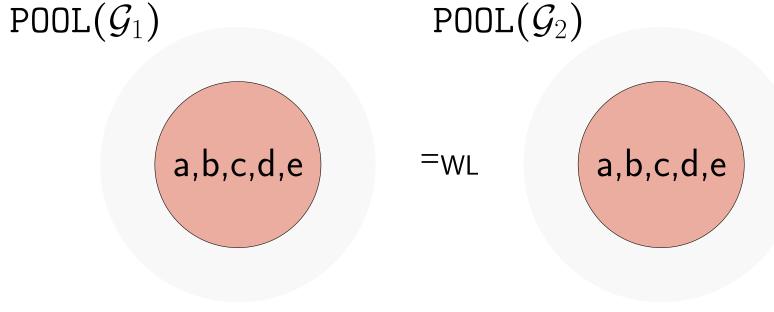
Alternative Select Functions



SEL: Cluster vertices on the same cycle







Expressive Pooling Operators

A pooling operator POOL = (SEL, RED, CON)

• Maintains Expressivity

• if it maps any pair of currently WL-distinguishable graphs to a pair of WL-distinguishable graphs:

 $\mathcal{G}_1 \neq_{CWL} \mathcal{G}_2 \Rightarrow \text{POOL}(\mathcal{G}_1) \neq_{WL} \text{POOL}(\mathcal{G}_2)$.

SEL: Cluster vertices on the same cycle $\texttt{POOL}(\mathcal{G}_1)$ $\texttt{POOL}(\mathcal{G}_2)$ $\texttt{POOL}(\mathcal{G}_1)$ $\texttt{POOL}(\mathcal{G}_2)$ a,b,c,d,e a,b,c,d,e,f,g,h,i,j ≠wl f,g,h,i,j

Conclusion

Increases Expressivity

• if it maintains expressivity

• if there is a pair of graphs that are WL indistinguishable which become WL-distinguishable after pooling:

there exist $\mathcal{G}_1 =_{WL} \mathcal{G}_2$ with $POOL(\mathcal{G}_1) \neq_{WL} POOL(\mathcal{G}_2)$.

Future Work

• Strategic pool assignment and topology-aware edge pruning lead to reduced graph size while enhancing GNN expressivity.

• Our findings establish a theoretical basis for existing methods, providing practical guidance for designing more expressive GNNs with hierarchical pooling operators.

- Measuring the actual gains in expressivity beyond general improvement to provide a more accurate understanding of enhancements.
- Applying our insights to modify existing pooling methods and devise novel approaches, aiming for improved predictive performance.
- Evaluating the methods thoroughly on both synthetic and real datasets to ensure a comprehensive assessment of their effectiveness.

UNIVERSITÀ di SIENA

U N I K A S S E L VERSITÄT

