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Abstract

In the domain of graph neural networks (GNNs), pooling operators are fundamental
to reduce the size of the graph by simplifying graph structures and vertex features.
Recent advances have shown that well-designed pooling operators, coupled with
message-passing layers, can endow hierarchical GNNs with an expressive power
regarding the graph isomorphism test that is equal to the Weisfeiler-Leman test.
However, the ability of hierarchical GNNs to increase expressive power by utilizing
graph coarsening was not yet explored. This results in uncertainties about the
benefits of pooling operators and a lack of sufficient properties to guide their
design. In this work, we identify conditions for pooling operators to generate
WL-distinguishable coarsened graphs from originally WL-indistinguishable but
non-isomorphic graphs. Our conditions are versatile and can be tailored to specific
tasks and data characteristics, offering a promising avenue for further research.

1 Introduction

With an ever-increasing amount of graph data available in many applications and the growing success
of neural networks, Graph Neural Networks (GNNs) (Scarselli et al, 2008) have become an active
field of research. Real-world problems modeled as graphs can grow to exceedingly large sizes.
Pooling operators address this challenge and generate coarser versions of given graphs by reducing
the number of nodes or edges (Bianchi et al, 2020b; Ying et al, 2018). The pooling operator is not
only valuable for reducing the graph’s size but also for enabling GNNs to gradually learn more global
information, thus facilitating the construction of truly deep GNNs.

However, efficiently and intelligently reducing the size of a graph is not a straightforward task, and
assessing the quality of a pooling operator presents its own set of challenges. Several metrics exist
for evaluating the quantity and type of information lost during graph reduction (Grattarola et al, 2022;
Bianchi et al, 2020a). One intriguing perspective to consider is the problem of Weisfeiler-Leman
(WL) equivalence (Leman and Weisfeiler, 1968). The WL test is an iterative algorithm that checks
whether two graphs are isomorphic. It is widely employed to investigate the expressive capabilities of
graph neural networks. Specifically, GNNs, when formulated with the appropriate message-passing
mechanisms, exhibit expressive power that is, at most, equivalent to that of the WL test (Maron et al,
2019; Morris et al, 2019; Xu et al, 2019). In recent years, significant efforts have been made to
enhance the expressive power of GNNs. Several alternative GNN architectures have been proposed,
such as kGNN (Morris et al, 2019), which draws inspiration from the extension of the WL algorithm
to k-tuples of nodes, or ESAN (Bevilacqua et al, 2022), which encodes multisets of subgraphs instead
of multisets of node features. Such expressive GNNs, however, usually result in a combinatorial
explosion of the input data size. In this work, we explore the potential of increasing the expressive
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power of GNNs while reducing the complexity and amount of computations while maintaining the
standard message-passing scheme.

Bianchi and Lachi (2023) were the first to delve into the relationship between pooling and the
expressiveness of hierarchical GNNs which are composed of message-passing layers and pooling
operators. In particular, they demonstrated the existence of three conditions on the formulation of
message-passing layers and pooling layers that are sufficient to guarantee that the overall hierarchical
GNN is as expressive as the WL graph isomorphism test.

Up to now, however, no one has explored the possibility of designing a pooling operator capable of
increasing the expressiveness of GNNs while maintaining a standard message-passing mechanism.
We show that some pooling operators can produce coarsened graphs that are distinguishable by
the WL test when applied to two non-isomorphic graphs that are indistinguishable by WL. We
furthermore define sufficient conditions for the pooling operator to increase expressiveness. Our
conditions are general in nature, opening the door to the design of various types of pooling operators
that satisfy these criteria.

2 Preliminaries

In this section, we set the notation and define the elementary objects used in this paper. Most of
our notation is taken from Bianchi and Lachi (2023). For better readability, we use {·} to denote
multisets, i.e., unordered collections that allow repeated entries. Let G = (V, E) be a graph with
N = |V| nodes V and edges E . For a given node v, the set of neighboring nodes is denoted by Nv.
Every node is equipped with d-dimensional node features x ∈ Rd.

We consider the task of graph classification, i.e., our goal is to find a classifier ϕ : G 7→ [0, 1]|C| that
maps each graph to probabilities for each class c ∈ C. The expressivity of a classifier ϕ regarding their
ability to identify graph isomorphisms is crucial to distinguish structurally similar, but unidentical
graphs. One such test is the Weisfeiler-Leman test (Leman and Weisfeiler, 1968):

Definition 1 (Weisfeiler-Leman test). The Weisfeiler-Leman test is an iterative node feature (color)
refinement algorithm to test whether two graphs are isomorphic. Let Σ be a set of values representing
the colors. At iteration 0, let

c(0)v = HASH0(ℓv)

where HASH0 is a function that bijectively codes every possible feature with a color in Σ. For any
iteration t > 0, let

c(t)v = HASH((c(t−1)
v , {c(t−1)

n : n ∈ Nv}))
where HASH injectively maps the above pair to a unique value in Σ, which has not been used in the
previous iterations. The algorithm terminates if the number of colors between two iterations does not
change, i.e. when there exists a bijection between {c(t−1)

n : n ∈ V} and {c(t)n : n ∈ V}.

Definition 2 (WL distinguishable). G1 and G2 are WL distinguishable (G1 ̸=WL G2) if there exists
an iteration t for which {c(t)n : n ∈ V1} ≠ {c(t)n : n ∈ V2}.

Definition 3 (currently WL distinguishable). Two graphs G1 and G2 are currently WL distinguishable
(G1 ̸=CWL G2) if their color multisets are currently different.

A Graph Neural Network (GNN) is a common way to instantiate ϕ, as it provides a flexible framework
and contains parameters that can be adapted to a given task using gradient descent. GNNs typically
follow a message-passing scheme, in which the representation of each node gets updated by com-
bining its previous representation with its neighboring nodes. To allow for the same discriminative
capabilities as the WL test, the updated node representations may be transformed using a Multilayer
Perceptron (MLP) that can represent injective functions (Xu et al, 2019). Several iterations (or
layers) of message-passing are performed until the multisets of updated vertex features (or colors) of
two graphs G1,G2 differ if they are WL distinguishable. The Graph Isomorphism Network is one
commonly used instantiation that achieves this expressivity in theory (Xu et al, 2019).

In this work, we analyze the capabilities of pooling operators regarding their changes to the identifica-
tion of non-isomorphic graphs. A pooling operator POOL is a function that maps a graph to a potentially
smaller graph. We require that POOL(G1) is isomorphic to POOL(G2) whenever G1 and G2 are iso-
morphic. According to Grattarola et al (2022) most pooling operators POOL : G → GP := (VP , EP )
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can be written as a triplet (SEL, RED, CON) of Select-Reduce-Connect functions. The select function
SEL : G 7→ S = {S1, . . . ,Sk} clusters the input graph nodes into so-called supernodes Sj = {sji}Ni=1

where sji indicates the contribution of node i on supernode j. The reduce function RED aggregates the
features of the nodes assigned to the same supernode. For the resulting graph, the connect function
CON generates the edges and edge features, if applicable, by connecting the supernodes.

While various pooling operators have been proposed (Ying et al, 2018; Luzhnica et al, 2019; Bianchi
et al, 2020a,b; Fey et al, 2020; Sanders et al, 2023; Tsitsulin et al, 2023), their effects on the
expressivity of GNNs regarding the WL test are largely unexplored. To the best of our knowledge,
conditions for increasing expressivity have not yet been considered by the community. Only recently,
a study by Bianchi and Lachi (2023) introduced the formal concepts needed for a pooling operator to
maintain the expressivity of a GNN, which we introduce next.

3 Pooling Maintains Expressivity

A recent work by Bianchi and Lachi (2023) formalized the ability of GNNs utilizing pooling
operations to maintain the expressivity given by the original GNN. We start by providing our formal
definition for pooling operators which maintain expressivity.

Definition 4 (Maintaining Expressivity). A pooling operator POOL = (SEL, RED, CON) is maintaining
expressivity if it maps any pair of currently WL-distinguishable graphs to a pair of WL-distinguishable
graphs, i.e., if G1 ̸=CWL G2 ⇒ POOL(G1) ̸=WL POOL(G2).

(Bianchi and Lachi, 2023) identified three properties on SEL and RED which are sufficient for a
pooling operator to maintain expressivity. We generalize these properties, as we find the key to
maintaining expressivity to be the injectivity of the combination of the SEL and RED functions on
the multisets of node features. Let XWL

Gi
= {xWL

Gi
(j) : j ∈ V} be a multiset of WL discriminative

features for each graph Gi. We now show that this discriminative power is maintained when using
any injective pooling operator.

Proposition 1. Let POOL = (SEL, RED, CON) such that

RED ◦ SEL : (XWL
Gi

,Gi) 7→ XWL
POOL(Gi)

is injective on XWL
Gi

. Then, POOL maintains expressivity.

Proof. If RED ◦ SEL is injective, then different node feature multisets XWL
Gm

̸= XWL
Gn

are mapped
to different pooled node feature multisets XWL

POOL(Gm) = RED ◦ SEL(XWL
Gm

) ̸= RED ◦ SEL(XWL
Gn

) =

XWL
POOL(Gn)

. As a result, expressivity is maintained: The Weisfeiler-Leman test can distinguish the two
pooled graphs independent of the choice of CON. In fact, POOL(G1) ̸=CWL POOL(G2).

We note that this proof is not specifically formulated for WL, and the expressivity is maintained even
when the original features are more discriminative. Bianchi and Lachi (2023) have shown that RED
can be chosen as a weighted sum of node features in a cluster if the cluster assignments of each node
sum to a fixed constant. In the setting of Proposition 1 we can use the trick proposed by Xu et al
(2019) to achive expressiveness: We choose a sufficiently powerful MLP REDθ that is able to learn
the injective function (X ,S) → XP . We now show that many choices for SEL do not only result in
expressive pooling operators but actually result in pooling operators that increase expressivity.

4 Pooling Increases Expressivity

In this section, we present sufficient conditions under which GNNs do not just maintain the expres-
sivity but provably increase the expressivity. We start by providing our general definition:

Definition 5 (Increasing Expressivity). A pooling operator POOL = (SEL, RED, CON) is increasing
expressivity if it is expressive and if there is a pair of graphs that are WL indistinguishable which
become WL-distinguishable after pooling, i.e., if there exist G1 =WL G2 with POOL(G1) ̸=WL

POOL(G2).
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Figure 1: Two WL-indistinguishable graphs G1,G2 which can be distinguished after pooling as
in Theorem 1. Clustering cycles maps G1 to a two supernode graph, while it maps G2 to a single
supernode graph.

In what follows, we assume that the composition of the select and reduce operator is injective, as
stated in Prop. 1. We highlight a key property which shows that obtaining different node clusterings
for two graphs allows us to construct a pooling method that distinguishes those graphs.

Lemma 1. Let RED be an injective function. For any two graphs G1,G2 we have

SEL(G1) ̸= SEL(G2) =⇒ POOL(G1) ̸=WL POOL(G2).

Proof. Let G1,G2 be two graphs with SEL(G1) ̸= SEL(G2), i.e., the obtained supernode sets
{S1

1 , . . . , S
1
k} ≠ {S2

1 , . . . , S
2
l } are not equal. Choosing RED to be injective, i.e., different multi-

sets of node representations are mapped to different supernode representations, implies POOL(G1) ̸=
POOL(G2).

This shows us that we can distinguish two pooled graphs by the WL test if we can obtain different
cluster assignments for any two graphs. Combining this insight with Prop. 1, we also know that all
cases distinguished by WL on the original graph remain distinguishable after pooling the graph. The
injectivity of RED can be satisfied by utilizing the sum as aggregation and an MLP for feature trans-
formation, as proposed for the GIN (Xu et al, 2019). Thus, selecting a suitable SEL function that (a)
maps isomorphic graphs to identical cluster assignments and (b) can assign two WL-indistinguishable
graphs to different cluster assignments is sufficient to achieve a strictly increased expressivity of a
model utilizing pooling. We can achieve this by using an operation that is incomparable to WL or
strictly more expressive than WL. We formalize this in the following statement:

Theorem 1. Let SEL distinguish some graphs that WL does not distinguish, i.e., let SEL be incompa-
rable to or more expressive than WL. Then, POOL can be constructed to increase expressivity.

Proof. By definition, there exists a pair of graphs G1 and G2 that is not distinguishable by WL
but can be distinguished by SEL. For these two graphs, there exists a cluster assignment such that
{S1

1 , . . . , S
1
k} ≠ {S2

1 , . . . , S
2
l } are different. Then, the resulting coarsened graphs POOL(G1) ̸=WL

POOL(G2) are different by injectivity as shown in Lemma 1. By our injectivity assumption (Prop. 1),
POOL maps any two other graphs currently distinguished by WL to WL distinguishable graphs.

Given this insight, we now have the theoretical confirmation that graph pooling can increase the
expressivity of GNNs by utilizing a powerful node selection operator. For example, consider the
SEL operator that clusters nodes together that lie on the same cycle. It maps the node set of G to the
node sets of the biconnected components of G. It is incomparable to WL, as it can not distinguish
nonisomorphic trees of the same size. Fig. 1 shows that the resulting pooling operator can distinguish
two triangles from a cycle of length six. We point out that several existing methods benefit from this
theoretical foundation, including CliquePool (Luzhnica et al, 2019), CurvPool (Sanders et al, 2023),
and many others (Fey et al, 2020).

In the following, we show that we can also increase the expressivity of GNNs even when both the
cluster assignments and the corresponding WL discriminative features are equal. Pooling methods
can achieve this by exploiting the graph topology and utilizing a suitable CON function. This is critical,
as this does not require a sophisticated SEL function but allows computationally light methods to also
increase expressivity. This observation is formalized in the following remark:
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Figure 2: Two WL-indistinguishable graphs G1,G2 which can be distinguished after pooling as in
Remark 1. Contracting edges A B and adding a single superedge between supernodes iff any
original nodes were connected results in a disconnected graph for G1 and a connected graph for G2.

Remark 1. Let CON be the function that constructs an edge between two supernodes if any pair of
their nodes were connected in the original graph. Then, it can be shown that there are graphs G1 and
G2 with

SEL(G1) = SEL(G2) and XWL
G1

= XWL
G2

such that POOL(G1) ̸=WL POOL(G2) ,

and POOL increases expressivity.

As an example consider two triangles with all nodes in the triangle having distinct colors, but both
triangles are colored equally as G1. As G2, consider a hexagon for which the nodes have the same
three colors and the neighboring colors are the same for G1 and G2. WL cannot distinguish these
graphs, i.e., XWL

G1
= XWL

G2
. For SEL, we choose any pair of node colors and contract all edges

corresponding to that pair, i.e., SEL(G1) = SEL(G2). For the triangle, this results in two graphs of
two nodes, each with one edge. For the hexagon, this results in a graph that is a cycle of four nodes.
WL distinguishes these graphs, i.e., POOL(G1) ̸=WL POOL(G2). This scenario is visualized in Fig. 2.

We note the importance of the CON function for increasing expressivity in this scenario. Transferring
all edges between nodes in different supernodes to their respective supernode can result in a multi-
graph. We would not increase expressivity by choosing CON to retain the number of individual edges
between nodes from these supernodes, i.e., we consider multigraphs. WL would not distinguish
these multigraphs, and expressivity would not be increased, as their resulting WL unfolding trees
for two graphs would still be equal. On the other hand, pruning multiple edges to a single edge
allows us to distinguish between graphs that WL could not distinguish. We attribute this to multiple
edges between two supernodes corresponding to a cycle formed by their individual nodes. When
deleting duplicate edges, we then detect that cycle. This allows us to distinguish this graph from
other structurally similar graphs, which do not have that same cycle. We visualize such a scenario
in Fig. 2. Consequently, pooling methods considering the graph topology when clustering nodes
have an advantage in expressivity against pooling methods that only rely on the node features, e.g.,
DiffPool (Ying et al, 2018), DMoN (Tsitsulin et al, 2023).

We next show that it is not only possible for pooling methods respecting the graph topology to achieve
increased expressivity, but this is always achieved when repeated often enough. The intuition is that
disconnected components remain disconnected, which WL cannot distinguish in all cases.
Proposition 2. Any POOL method retaining disconnected components when repeatedly applied until
all edges are contracted is increasing expressivity.

Proof. The ability to maintain expressivity for all graphs follows from Prop. 1. In addition, two
triangles are mapped to two nodes, while the hexagon is mapped to a single node.

Our findings in this section show that pooling methods can increase the expressivity of GNNs. We
outlined two directions: First, utilizing a cluster assignment, which can distinguish non-isomorphic
graphs that WL cannot, allows the GNN to distinguish additional cases. This holds even when the
cluster assignment fails to distinguish some graphs WL could distinguish, as resulting equal graphs
are combined with discriminative node representations. Second, even less powerful methods for
cluster assignment that cannot distinguish non-isomorphic graphs can increase the expressivity. This
result stems from considering the graph topology and the choice of the CON function, as duplicate
edges between supernodes correspond to detected cycles between these nodes. Going forward, we
aim to further study the maximal achievable expressivity with pooling methods.
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5 Conclusion and Future Work

In this work, we established several ways in which pooling can increase the expressivity of GNNs.
This can be done by choosing a powerful pool assignment method or by respecting the graph topology
and pruning duplicate edges. Notably, this approach marks the first attempt in the literature to enhance
expressivity while concurrently reducing the amount of information. Our results provides a valuable
theoretical basis for many existing methods and may serve as a guideline for designing simple, more
expressive GNNs that utilize pooling.

There are various open questions we want to investigate further. For one, our goal is to precisely
quantify the achievable gains in expressivity beyond a general improvement. Second, we want to
exploit our insights to adjust existing pooling methods and design novel approaches to achieve better
predictive performance, which we plan to evaluate extensively on synthetic and real datasets.
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