

Ramsés J. Sánchez, Lukas Conrads, Pascal Welke, Kostadin Cvejoski and César Ojeda

Large Language Models infer representations that implicitly encode rich contextual word semantics and sentence-level grammar

Large Language Models infer representations that implicitly encode rich contextual word semantics and sentence-level grammar

A Structural Probe for Finding Syntax in Word Representations

Large Language Models infer representations that implicitly encode rich contextual word semantics and sentence-level grammar

Open Sesame: Getting Inside BERT's Linguistic Knowledge

Yongjie Lin a,* and Yi Chern Tan a,* and Robert Frank b (2019)

A Structural Probe for Finding Syntax in Word Representations

Ian Tenney,* ¹ Patrick Xia, ² Berlin Chen, ³ Alex Wang, ⁴ Adam Poliak, ² R. Thomas McCoy, ² Najoung Kim, ² Benjamin Van Durme, ² Samuel R. Bowman, ⁴ Dipanjan Das, ¹ and Ellie Pavlick ^{1,5}

(2019)

Large Language Models infer representations that implicitly encode rich contextual word semantics and sentence-level grammar

Open Sesame: Getting Inside BERT's Linguistic Knowledge

Yongjie Lin a,* and Yi Chern Tan a,* and Robert Frank b (2019)

A Structural Probe for Finding Syntax in Word Representations

Ian Tenney,* ¹ Patrick Xia, ² Berlin Chen, ³ Alex Wang, ⁴ Adam Poliak, ² R. Thomas McCoy, ² Najoung Kim, ² Benjamin Van Durme, ² Samuel R. Bowman, ⁴ Dipanjan Das, ¹ and Ellie Pavlick ^{1,5}

(2019)

How Can We Know What Language Models Know?

Zhengbao Jiang^{1*} Frank F. Xu^{1*} Jun Araki² Graham Neubig¹ (2020)

Large Language Models infer representations that implicitly encode rich contextual word semantics and sentence-level grammar

Open Sesame: Getting Inside BERT's Linguistic Knowledge

Yongjie Lin a,* and Yi Chern Tan a,* and Robert Frank b (2019)

A Structural Probe for Finding Syntax in Word Representations

Ian Tenney,* ¹ Patrick Xia, ² Berlin Chen, ³ Alex Wang, ⁴ Adam Poliak, ² R. Thomas McCoy, ² Najoung Kim, ² Benjamin Van Durme, ² Samuel R. Bowman, ⁴ Dipanjan Das, ¹ and Ellie Pavlick ^{1,5}

(2019)

How Can We Know What Language Models Know?

Zhengbao Jiang^{1*} Frank F. Xu^{1*} Jun Araki² Graham Neubig¹ (2020)

Large Language Models infer representations that implicitly encode rich contextual word semantics and sentence-level grammar

Open Sesame: Getting Inside BERT's Linguistic Knowledge

Yongjie $Lin^{a,*}$ and Yi Chern $Tan^{a,*}$ and Robert $Frank^b$ (2019)

Syntactic Structure from Deep Learning

Tal Linzen¹ and Marco Baroni^{2,3,4} (2021)

A Structural Probe for Finding Syntax in Word Representations

Ian Tenney,* ¹ Patrick Xia, ² Berlin Chen, ³ Alex Wang, ⁴ Adam Poliak, ² R. Thomas McCoy, ² Najoung Kim, ² Benjamin Van Durme, ² Samuel R. Bowman, ⁴ Dipanjan Das, ¹ and Ellie Pavlick ^{1,5}

(2019)

How Can We Know What Language Models Know?

Zhengbao Jiang^{1*} Frank F. Xu^{1*} Jun Araki² Graham Neubig¹ (2020)

What BERT Is Not: Lessons from a New Suite of Psycholinguistic Diagnostics for Language Models

Allyson Ettinger (2020)

Large Language Models infer representations that implicitly encode rich contextual word semantics and sentence-level grammar

Open Sesame: Getting Inside BERT's Linguistic Knowledge

Yongjie $Lin^{a,*}$ and Yi Chern $Tan^{a,*}$ and Robert $Frank^b$ (2019)

Syntactic Structure from Deep Learning

Tal Linzen¹ and Marco Baroni^{2,3,4} (2021)

A Structural Probe for Finding Syntax in Word Representations

What do you learn from context? Probing for SENTENCE STRUCTURE IN CONTEXTUALIZED WORD REPRESENTATIONS

Ian Tenney,* 1 Patrick Xia, 2 Berlin Chen, 3 Alex Wang, 4 Adam Poliak, 2 R. Thomas McCoy,² Najoung Kim,² Benjamin Van Durme,² Samuel R. Bowman,⁴ **Dipanjan Das,**¹ and Ellie Pavlick^{1,5}

(2019)

How Can We Know What Language Models Know?

Zhengbao Jiang^{1*} Frank F. Xu^{1*} Jun Araki² Graham Neubig¹ (2020)

What BERT Is Not: Lessons from a New Suite of Psycholinguistic **Diagnostics for Language Models**

Allyson Ettinger (2020)

Large Language Models infer representations that implicitly encode rich contextual word semantics and sentence-level grammar

Open Sesame: Getting Inside BERT's Linguistic Knowledge

Yongjie Lin^{a,*} and Yi Chern Tan^{a,*} and Robert Frank^b (2019)

A Structural Probe for Finding Syntax in Word Representations

John Hewitt

Christopher D. Manning (2019)

Syntactic Structure from eep Learning

Tal Linzen¹ and Marco Baroni^{2,3,4} (2021)

Emergent linguistic structure in artificial neural networks trained by self-supervision

Christopher D. Manning^{a,1}, Kevin Clark^a, John Hewitt^a, Urvashi Khandelwal^a, and Omer Levy^b (2020)

Large Language Models struggle to solve tasks that require formal and commonsense reasoning

Are NLP Models really able to Solve Simple Math Word Problems?

Satwik Bhattamishra **Arkil Patel** Navin Goyal (2021)

Negated and Misprimed Probes for Pretrained Language Models:

Birds Can Talk, But Cannot Fly

Nora Kassner, Hinrich Schütze (2020)

LARGE LANGUAGE MODELS ARE NOT ZERO-SHOT **COMMUNICATORS** (2022)

Laura Ruis, Akbir Khan, Stella Biderman, Sara Hooker, Tim Rocktäschel, Edward Grefenstette 15

Large Language Models struggle to solve tasks that

require formal and commonsense reasoning

On the Paradox of Learning to Reason from Data

Hongh

(2022)

Things not Written in Text: Exploring Spatial Commonsense from Visual **Signals**

Xiao Liu¹, Da Yin², Yansong Feng^{1,3*} and Dongyan Zhao^{1,4,5} (2022)

COMPS: Conceptual Minimal Pair Sentences for testing Robust Property Knowledge and its Inheritance in Pre-trained Language Models

Kanishka Misra

Julia Rayz

Allyson Ettinger

(2023)

Large Language Models Still Can't Plan (A Benchmark for LLMs on Planning and Reasoning about Change)

Karthik Valmeekam*

Sarath Sreedharan †

(2023)

Alberto Olmo*

Subbarao Kambhampati

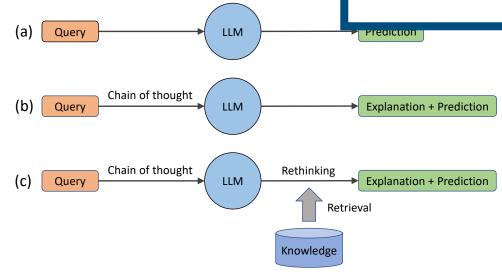
Large Language Models can be guided to generate reasoning explicitly: Chain-of-Thought

Hangfeng He^{†*} Dan Roth§ Hongming Zhang[‡] (2022)

Iteratively Prompt Pre-trained Language Models for Chain of Thought

Boshi Wang, Xiang Deng and Huan Sun (2022)

Large Lan



S can be guided to generate

reasoning explicitly: Chain-of-Thought

L'hought Prompting Elicits Reasoning in Large Language Models

Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering Jason Wei **Xuezhi Wang Dale Schuurmans** Maarten Bosma Denny Zhou Fei Xia Ed H. Chi Quoc V. Le **Brian Ichter** (2022)

Pan Lu^{1,3}, Swaroop Mishra^{2,3}, Tony Xia¹, Liang Qiu¹, Kai-Wei Chang¹, Song-Chun Zhu¹, Oyvind Tafjord³, Peter Clark³, Ashwin Kalyan³

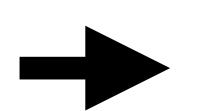
(2022)

Improving mathematical reasoning with process supervision

We propose to use Large Language Models to inferunsupervised representations for reasoning

We propose to use Large Language Models to inferunsupervised representations for reasoning

Minimal inductive biases

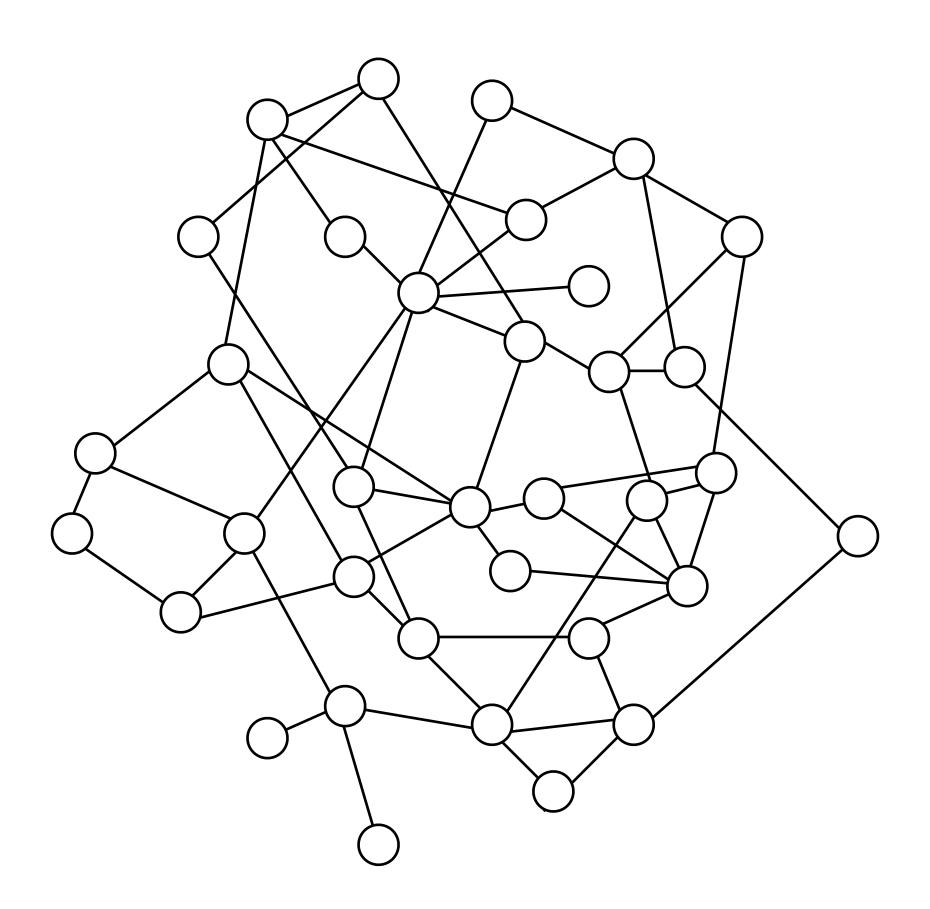


Relational structures

that allow for compositionality

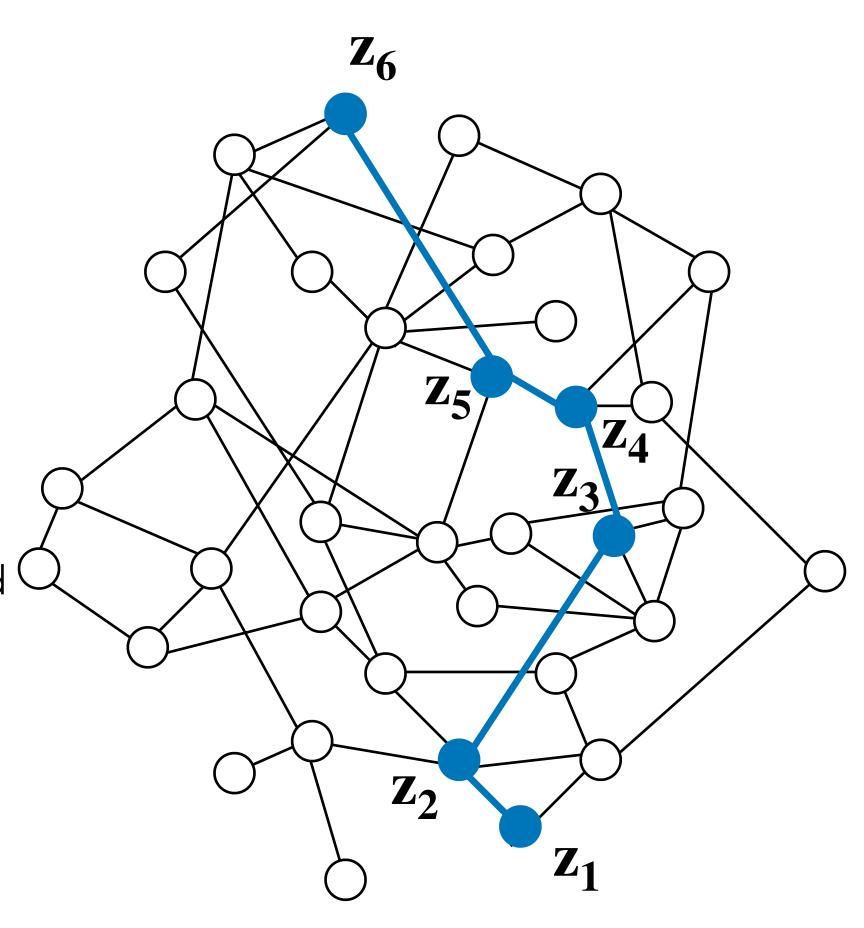
We assume

1. There is a set of symbols encoding some high-level, abstract semantic content of natural language



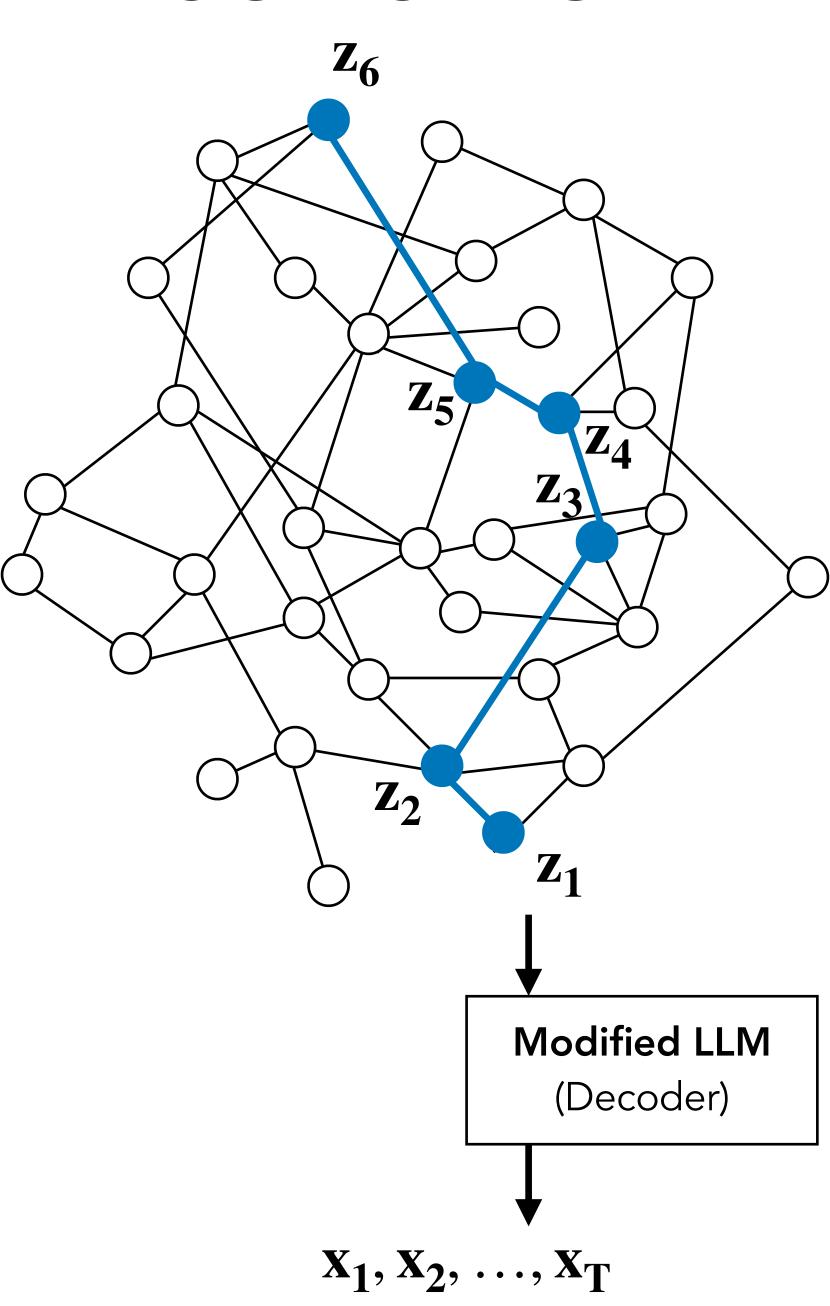
We assume

- 1. There is a set of symbols encoding some high-level, abstract semantic content of natural language
- 2. The **schemata** are sequences of connected symbols, composed by random walkers



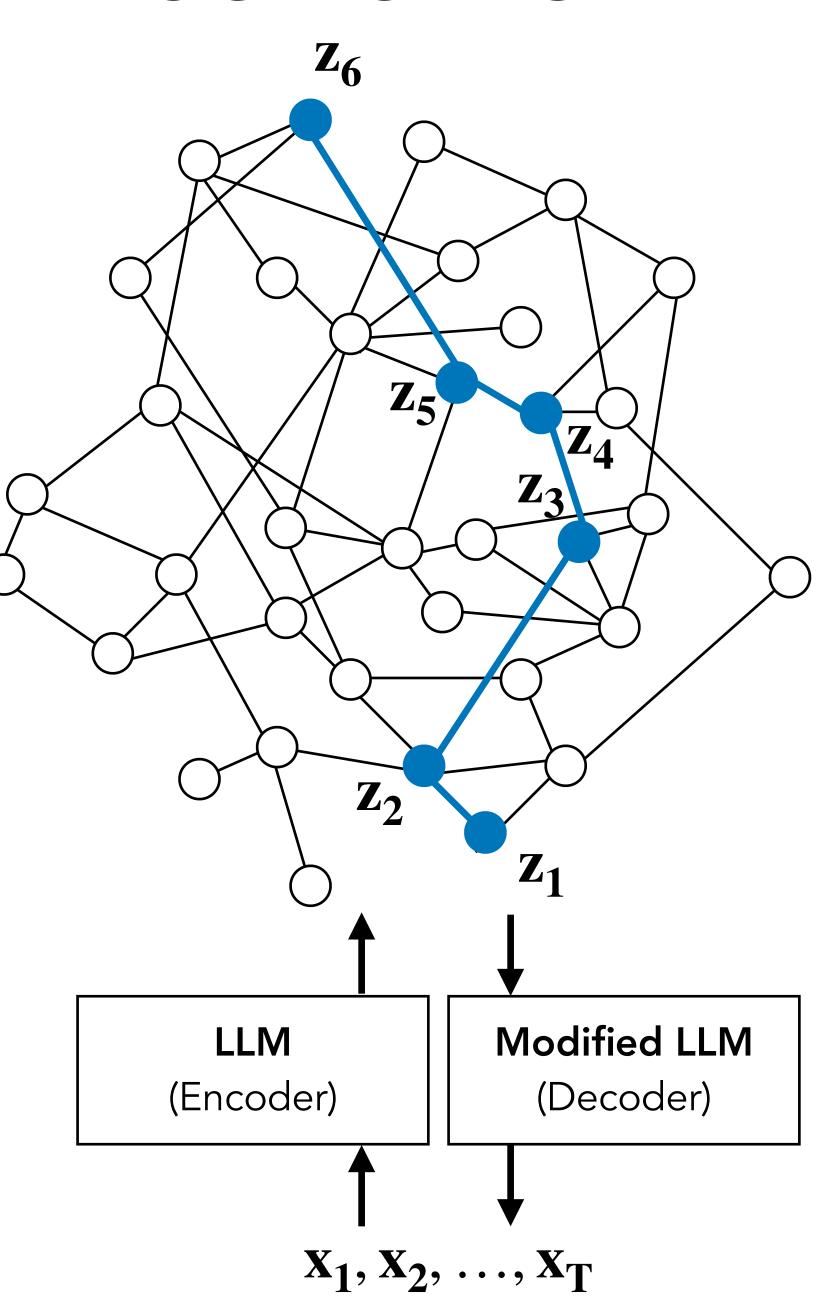
We assume

- 1. There is a set of symbols encoding some high-level, abstract semantic content of natural language
- 2. The **schemata** are sequences of connected symbols, composed by random walkers
- 3. Sentences are generated conditioned on the schemata



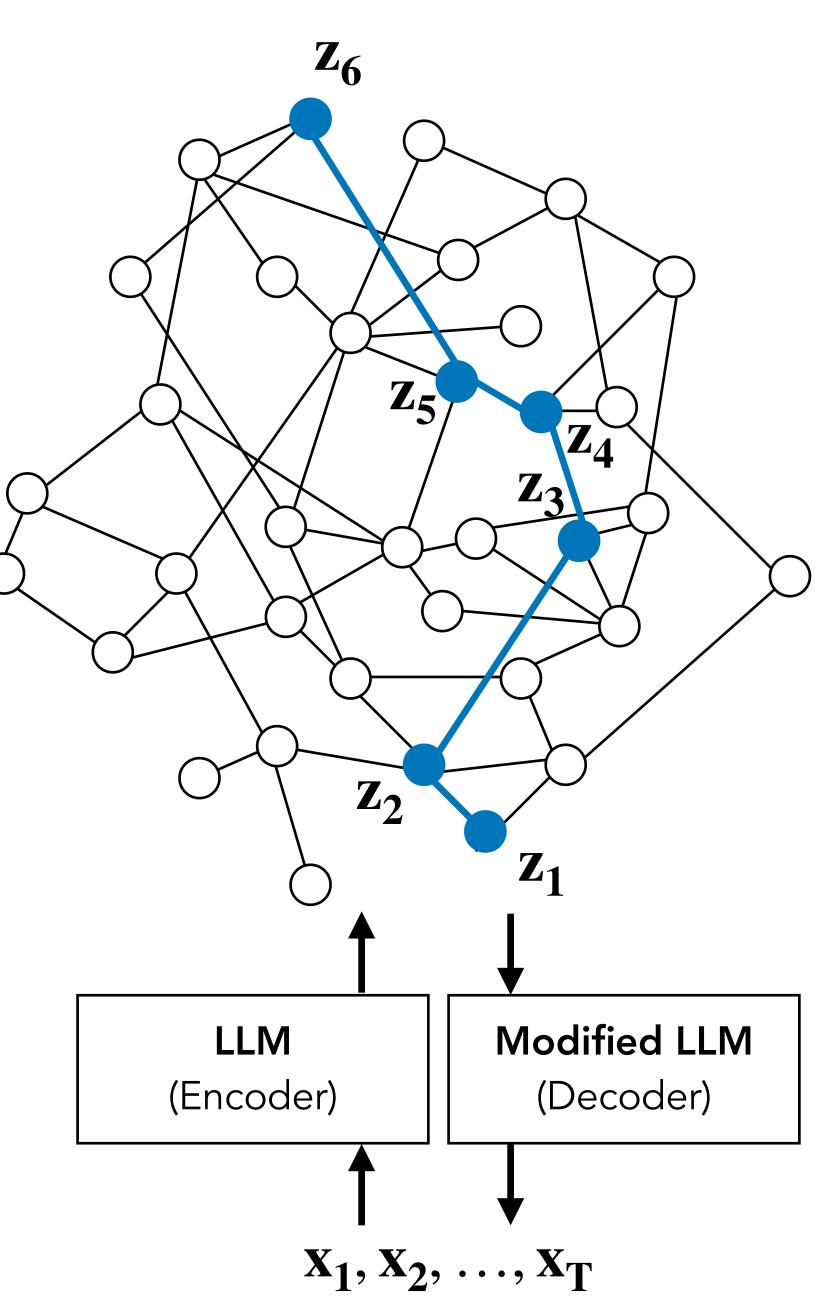
We assume

- 1. There is a set of symbols encoding some high-level, abstract semantic content of natural language
- 2. The **schemata** are sequences of connected symbols, composed by random walkers
- 3. Sentences are generated conditioned on the schemata



We assume

- 1. There is a set of symbols encoding some high-level, abstract semantic content of natural language
- 2. The **schemata** are sequences of connected symbols, composed by random walkers
- 3. Sentences are generated conditioned on the schemata



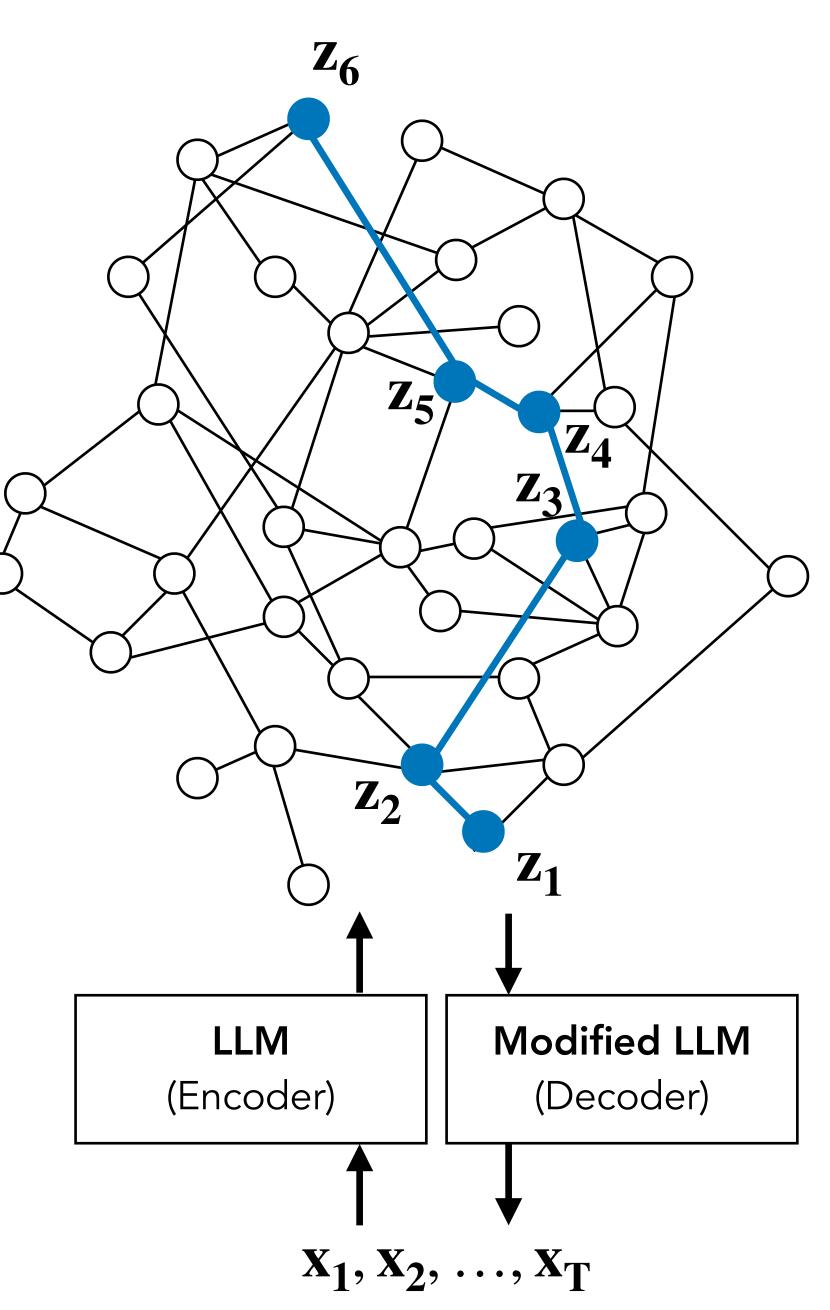
We infer

1. $q_{\phi}(\mathbf{A})$

Posterior distribution over **global** graph

We assume

- 1. There is a set of symbols encoding some high-level, abstract semantic content of natural language
- 2. The **schemata** are sequences of connected symbols, composed by random walkers
- 3. Sentences are generated conditioned on the schemata



We infer

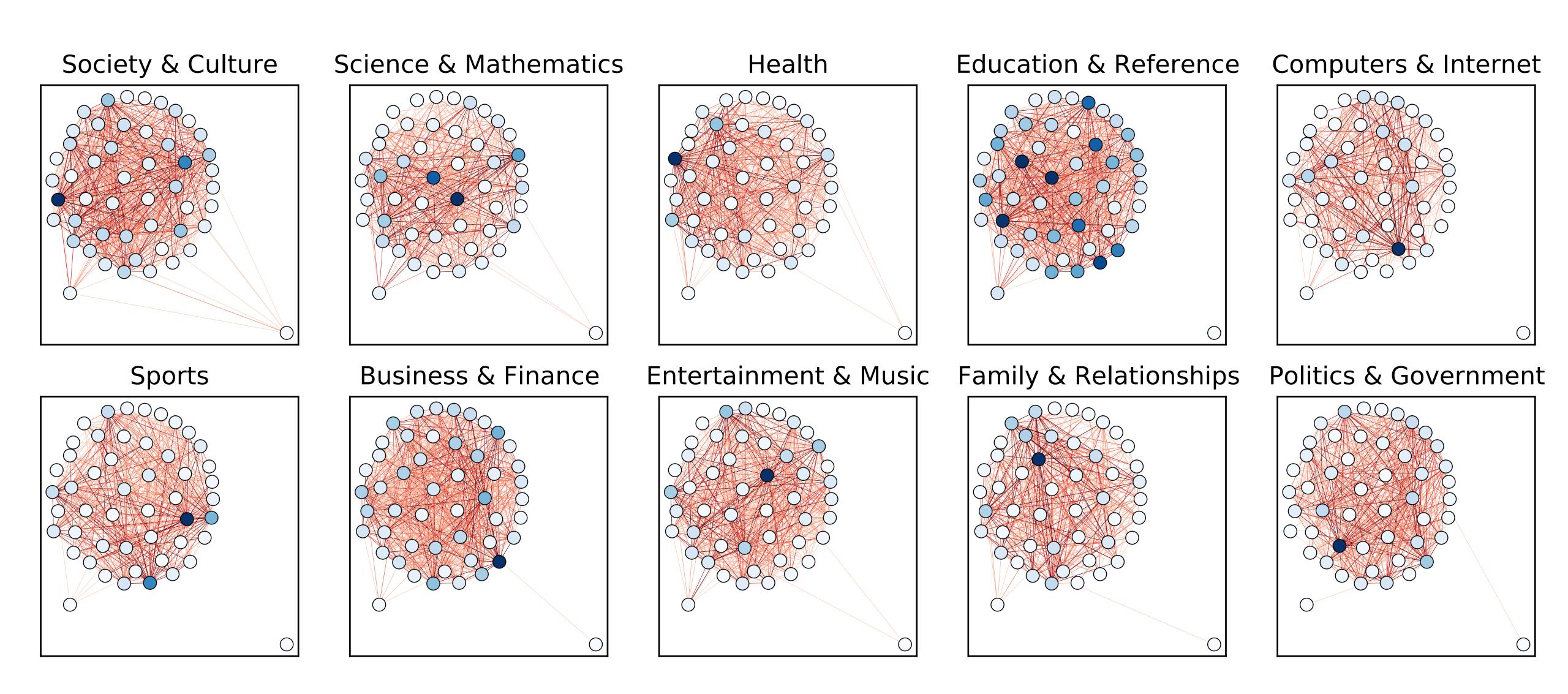
1. $q_{\phi}(\mathbf{A})$

Posterior distribution over **global** graph

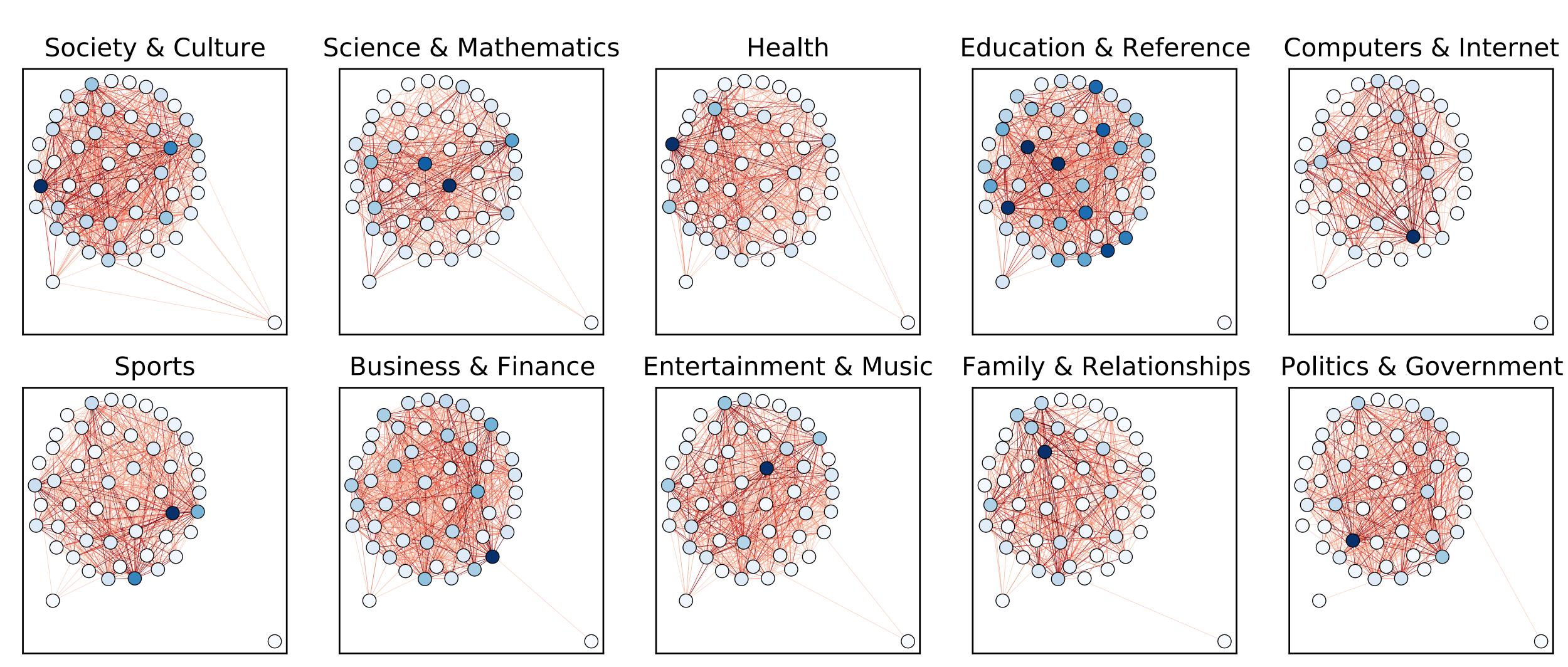
2. $q_{\phi}(\mathbf{z}_{1:L} | \mathbf{x}_{1:T}, \mathbf{A})$

Posterior distribution over **local** random walks (schemata)

Hidden Schema Networks inferred from Yahoo



Hidden Schema Networks inferred from Yahoo



Symbols are interpreted a posteriori

Subject Relation Object

PersonX makes PersonY's coffee xIntent PersonX wanted to be helpful

TASK: given Subject + Relation generate Object

Subject Relation Object

PersonX makes PersonY's coffee xIntent PersonX wanted to be helpful

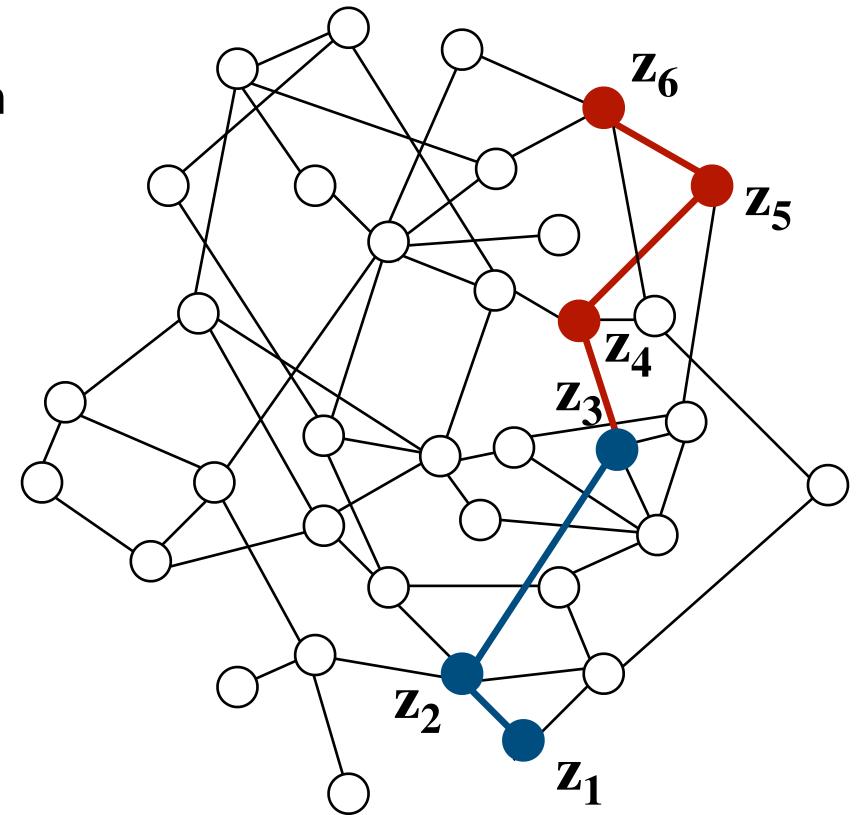
TASK: given Subject + Relation generate Object

Reasoning with Hidden Schemata

1. Encode $\mathbf{s} + \mathbf{r} + \mathbf{o}$ onto random walks

(s, r, o)

— (s, r)



Subject Relation Object

PersonX makes PersonY's coffee xIntent PersonX wanted to be helpful

TASK: given Subject + Relation generate Object

Reasoning with Hidden Schemata

1. Encode $\mathbf{s} + \mathbf{r} + \mathbf{o}$ onto random walks

(s, r, o)

- (s, r)

2. Train `reasoning" autoregressive models on2nd half of random walks (the half encoding o)



Subject Relation Object

PersonX makes PersonY's coffee xIntent PersonX wanted to be helpful

TASK: given Subject + Relation generate Object

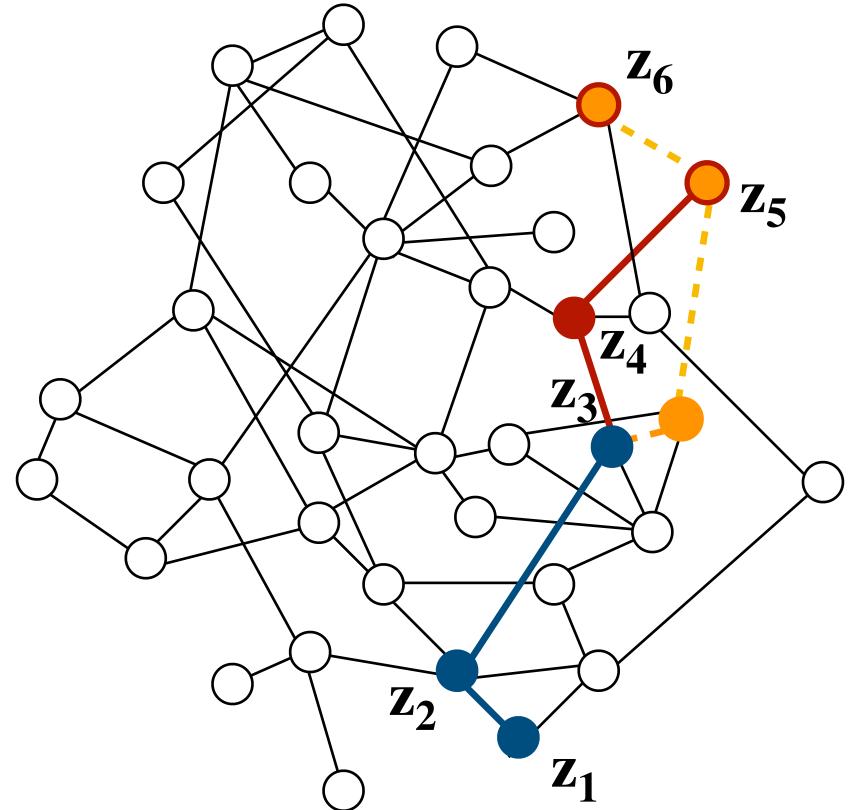
Reasoning with Hidden Schemata

1. Encode $\mathbf{s} + \mathbf{r} + \mathbf{o}$ onto random walks

(s, r, o)

- (s, r)

2. Train `reasoning" autoregressive models on2nd half of random walks (the half encoding o)



Subject Relation Object

PersonX makes PersonY's coffee xIntent PersonX wanted to be helpful

TASK: given Subject + Relation generate Object

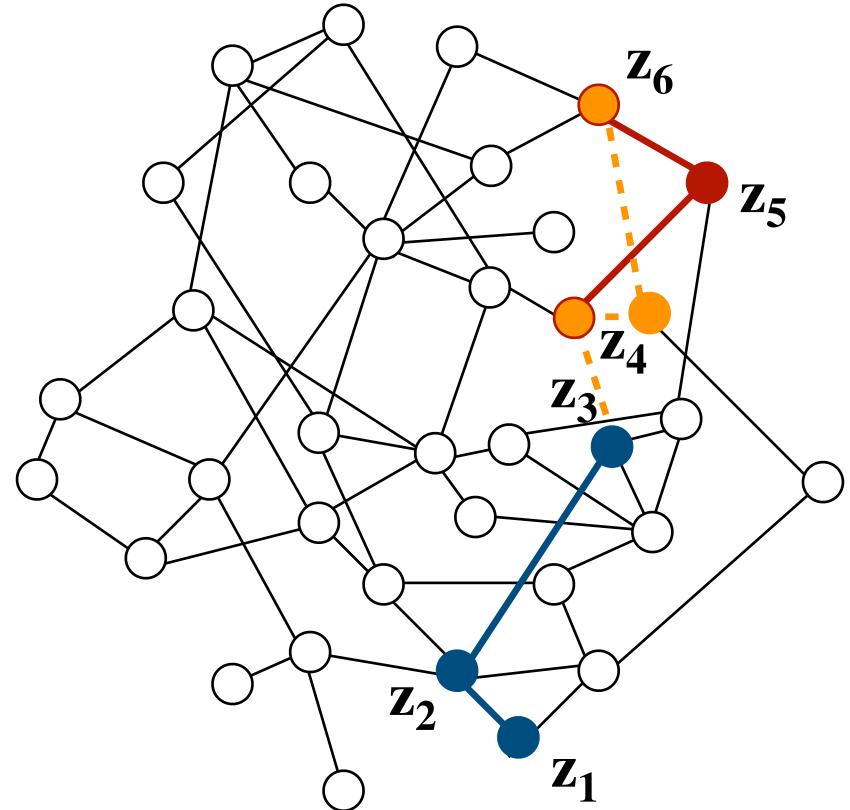
Reasoning with Hidden Schemata

1. Encode $\mathbf{s} + \mathbf{r} + \mathbf{o}$ onto random walks

(s, r, o)

- (s, r)

2. Train `reasoning" autoregressive models on2nd half of random walks (the half encoding o)



Subject Relation Object

PersonX makes PersonY's coffee xIntent PersonX wanted to be helpful

TASK: given Subject + Relation generate Object

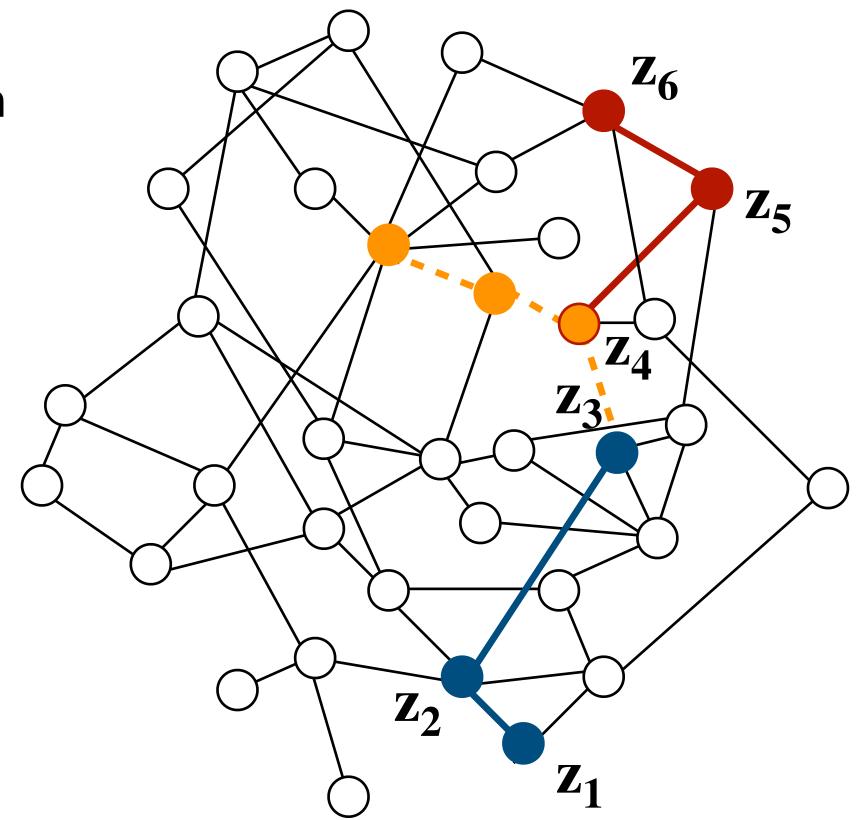
Reasoning with Hidden Schemata

1. Encode $\mathbf{s} + \mathbf{r} + \mathbf{o}$ onto random walks

(s, r, o)

(s, r)

2. Train `reasoning" autoregressive models on2nd half of random walks (the half encoding o)



Subject Relation Object

PersonX makes PersonY's coffee xIntent PersonX wanted to be helpful

TASK: given Subject + Relation generate Object

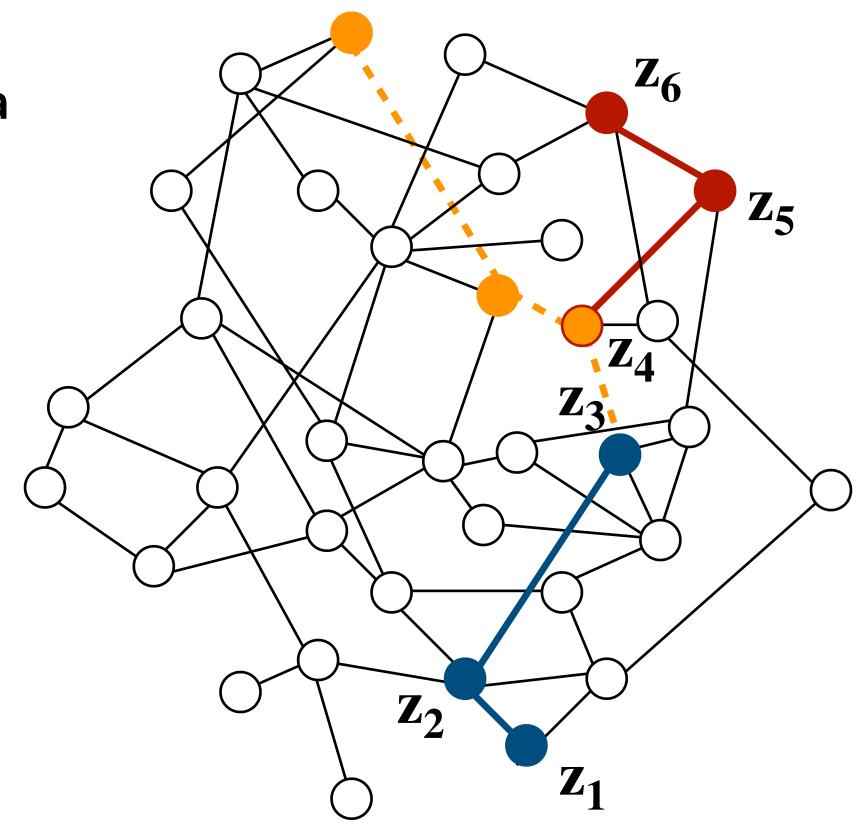
Reasoning with Hidden Schemata

1. Encode $\mathbf{s} + \mathbf{r} + \mathbf{o}$ onto random walks

(s, r, o)

- (s, r)

2. Train `reasoning" autoregressive models on2nd half of random walks (the half encoding o)



Subject Relation Object

PersonX makes PersonY's coffee xIntent PersonX wanted to be helpful

TASK: given Subject + Relation generate Object

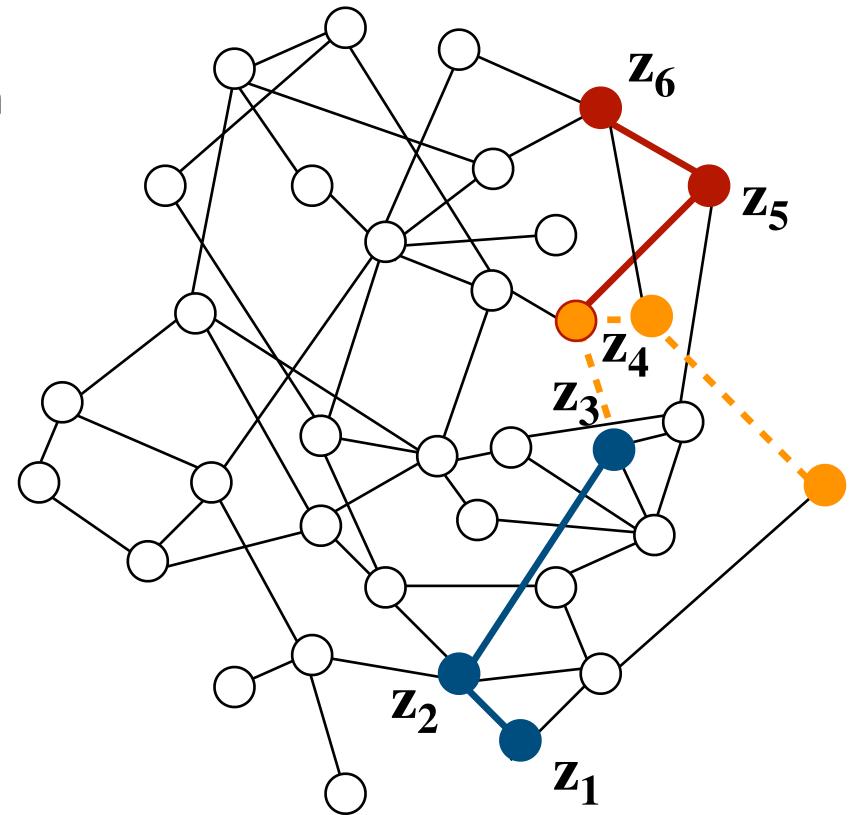
Reasoning with Hidden Schemata

1. Encode $\mathbf{s} + \mathbf{r} + \mathbf{o}$ onto random walks

(s, r, o)

- (s, r)

2. Train `reasoning" autoregressive models on2nd half of random walks (the half encoding o)



Subject Relation Object

PersonX makes PersonY's coffee xIntent PersonX wanted to be helpful

TASK: given Subject + Relation generate Object

Reasoning with Hidden Schemata

1. Encode $\mathbf{s} + \mathbf{r} + \mathbf{o}$ onto random walks

(s, r, o)

(s, r)

2. Train `reasoning" autoregressive models on2nd half of random walks (the half encoding o)

