
Mining Tree Patterns with
Partially Injective Homomorphisms

Till Hendrik Schulz, Tamás Horváth, Pascal Welke, and Stefan Wrobel

University of Bonn
Fraunhofer IAIS

Fraunhofer Center for Machine Learning

Schulz et al. (Bonn) Partially Injective Homomorphisms 1 / 13

Learning from Structured Data

The Two Most Common Pattern
Matching Operators in

Learning from Structured Data

Schulz et al. (Bonn) Partially Injective Homomorphisms 2 / 13

Learning from Structured Data

The Two Most Common Pattern
Matching Operators in

Learning from Structured Data

Homomorphism between
Relational Structures

Schulz et al. (Bonn) Partially Injective Homomorphisms 2 / 13

Learning from Structured Data

The Two Most Common Pattern
Matching Operators in

Learning from Structured Data

Substructure Isomorphism
between Relational Structures

Homomorphism between
Relational Structures

Schulz et al. (Bonn) Partially Injective Homomorphisms 2 / 13

Learning from Structured Data

The Two Most Common Pattern
Matching Operators in

Learning from Structured Data

Substructure Isomorphism
between Relational Structures

Homomorphism between
Relational Structures

ILP: ϴ-Subsumption

Schulz et al. (Bonn) Partially Injective Homomorphisms 2 / 13

Learning from Structured Data

The Two Most Common Pattern
Matching Operators in

Learning from Structured Data

Substructure Isomorphism
between Relational Structures

Homomorphism between
Relational Structures

ILP: ϴ-Subsumption

Special Case: Graphs

Schulz et al. (Bonn) Partially Injective Homomorphisms 2 / 13

Learning from Structured Data

The Two Most Common Pattern
Matching Operators in

Learning from Structured Data

Substructure Isomorphism
between Relational Structures

Homomorphism between
Relational Structures

ILP: ϴ-Subsumption

Special Case: Graphs

Homomorphism between Graphs

: polynomially decidable for
 many graph classes
: poor predictive performance

+

_

Schulz et al. (Bonn) Partially Injective Homomorphisms 2 / 13

Learning from Structured Data

The Two Most Common Pattern
Matching Operators in

Learning from Structured Data

Substructure Isomorphism
between Relational Structures

Homomorphism between
Relational Structures

ILP: ϴ-Subsumption Graph Mining:
Subgraph Isomorphism

Special Case: Graphs

Homomorphism between Graphs

: polynomially decidable for
 many graph classes
: poor predictive performance

+

_

Schulz et al. (Bonn) Partially Injective Homomorphisms 2 / 13

Learning from Structured Data

The Two Most Common Pattern
Matching Operators in

Learning from Structured Data

Substructure Isomorphism
between Relational Structures

Homomorphism between
Relational Structures

ILP: ϴ-Subsumption Graph Mining:
Subgraph Isomorphism

Special Case: Graphs

Homomorphism between Graphs Injective Homomorphism
between Graphs

: better predictive performance

: generally NP-complete

+
_

: polynomially decidable for
 many graph classes
: poor predictive performance

+

_

Schulz et al. (Bonn) Partially Injective Homomorphisms 2 / 13

Learning from Structured Data

The Two Most Common Pattern
Matching Operators in

Learning from Structured Data

Substructure Isomorphism
between Relational Structures

Homomorphism between
Relational Structures

ILP: ϴ-Subsumption Graph Mining:
Subgraph Isomorphism

Special Case: Graphs

Homomorphism between Graphs Injective Homomorphism
between Graphs

Partially Injective
Homomorphism

: better predictive performance

: generally NP-complete

+
_

: polynomially decidable for
 many graph classes
: poor predictive performance

+

_

Schulz et al. (Bonn) Partially Injective Homomorphisms 2 / 13

Goal

Homomorphism between graphs Injective Homomorphism
between graphs

Partially Injective
Homomorphism

: better predictive performance

: generally NP-complete

+
_

: polynomially decidable for
 many graph classes
: poor predictive performance

+

_

We would like to combine the advantages of both sides

In this work, pattern graphs are restricted to trees

homomorphism from trees is decidable in polynomial time

deciding subgraph-isomorphism from trees is NP-complete

Clearly, the injectivity constraint causes the complexity difference

Solution: Bridge the gap by requiring only partial injectivity

Schulz et al. (Bonn) Partially Injective Homomorphisms 3 / 13

Goal

Homomorphism between graphs Injective Homomorphism
between graphs

Partially Injective
Homomorphism

: better predictive performance

: generally NP-complete

+
_

: polynomially decidable for
 many graph classes
: poor predictive performance

+

_

We would like to combine the advantages of both sides

In this work, pattern graphs are restricted to trees

homomorphism from trees is decidable in polynomial time

deciding subgraph-isomorphism from trees is NP-complete

Clearly, the injectivity constraint causes the complexity difference

Solution: Bridge the gap by requiring only partial injectivity

Schulz et al. (Bonn) Partially Injective Homomorphisms 3 / 13

Goal

Homomorphism between graphs Injective Homomorphism
between graphs

Partially Injective
Homomorphism

: better predictive performance

: generally NP-complete

+
_

: polynomially decidable for
 many graph classes
: poor predictive performance

+

_

We would like to combine the advantages of both sides

In this work, pattern graphs are restricted to trees

homomorphism from trees is decidable in polynomial time

deciding subgraph-isomorphism from trees is NP-complete

Clearly, the injectivity constraint causes the complexity difference

Solution: Bridge the gap by requiring only partial injectivity

Schulz et al. (Bonn) Partially Injective Homomorphisms 3 / 13

Goal

Homomorphism between graphs Injective Homomorphism
between graphs

Partially Injective
Homomorphism

: better predictive performance

: generally NP-complete

+
_

: polynomially decidable for
 many graph classes
: poor predictive performance

+

_

We would like to combine the advantages of both sides

In this work, pattern graphs are restricted to trees

homomorphism from trees is decidable in polynomial time

deciding subgraph-isomorphism from trees is NP-complete

Clearly, the injectivity constraint causes the complexity difference

Solution: Bridge the gap by requiring only partial injectivity

Schulz et al. (Bonn) Partially Injective Homomorphisms 3 / 13

Goal

Homomorphism between graphs Injective Homomorphism
between graphs

Partially Injective
Homomorphism

: better predictive performance

: generally NP-complete

+
_

: polynomially decidable for
 many graph classes
: poor predictive performance

+

_

We would like to combine the advantages of both sides

In this work, pattern graphs are restricted to trees

homomorphism from trees is decidable in polynomial time

deciding subgraph-isomorphism from trees is NP-complete

Clearly, the injectivity constraint causes the complexity difference

Solution: Bridge the gap by requiring only partial injectivity

Schulz et al. (Bonn) Partially Injective Homomorphisms 3 / 13

Goal

Homomorphism between graphs Injective Homomorphism
between graphs

Partially Injective
Homomorphism

: better predictive performance

: generally NP-complete

+
_

: polynomially decidable for
 many graph classes
: poor predictive performance

+

_

We would like to combine the advantages of both sides

In this work, pattern graphs are restricted to trees

homomorphism from trees is decidable in polynomial time

deciding subgraph-isomorphism from trees is NP-complete

Clearly, the injectivity constraint causes the complexity difference

Solution: Bridge the gap by requiring only partial injectivity

Schulz et al. (Bonn) Partially Injective Homomorphisms 3 / 13

Injective Homomorphism

Graph homomorphism:
H: G:

Subgraph isomorphism can be reduced to homomorphism:

Transform graphs H,G into H ′,G ′, respectively, as follows:

Color all edges of H and G in blue (original edges)

Add to H red edges between all unconnected vertex pairs (constraint edges)

Connect all vertex pairs in G by a red edge

H is subgraph isomorphic to G iff there exists a homomorphism from H ′ into G ′

Schulz et al. (Bonn) Partially Injective Homomorphisms 4 / 13

Injective Homomorphism

Graph homomorphism:
H: G:

Subgraph isomorphism can be reduced to homomorphism:

H: G:

Transform graphs H,G into H ′,G ′, respectively, as follows:

Color all edges of H and G in blue (original edges)

Add to H red edges between all unconnected vertex pairs (constraint edges)

Connect all vertex pairs in G by a red edge

H is subgraph isomorphic to G iff there exists a homomorphism from H ′ into G ′

Schulz et al. (Bonn) Partially Injective Homomorphisms 4 / 13

Injective Homomorphism

Graph homomorphism:
H: G:

Subgraph isomorphism can be reduced to homomorphism:

H: G:

Transform graphs H,G into H ′,G ′, respectively, as follows:

Color all edges of H and G in blue (original edges)

Add to H red edges between all unconnected vertex pairs (constraint edges)

Connect all vertex pairs in G by a red edge

H is subgraph isomorphic to G iff there exists a homomorphism from H ′ into G ′

Schulz et al. (Bonn) Partially Injective Homomorphisms 4 / 13

Injective Homomorphism

Graph homomorphism:
H: G:

Subgraph isomorphism can be reduced to homomorphism:

H': G:

Transform graphs H,G into H ′,G ′, respectively, as follows:

Color all edges of H and G in blue (original edges)

Add to H red edges between all unconnected vertex pairs (constraint edges)

Connect all vertex pairs in G by a red edge

H is subgraph isomorphic to G iff there exists a homomorphism from H ′ into G ′

Schulz et al. (Bonn) Partially Injective Homomorphisms 4 / 13

Injective Homomorphism

Graph homomorphism:
H: G:

Subgraph isomorphism can be reduced to homomorphism:

H': G':

Transform graphs H,G into H ′,G ′, respectively, as follows:

Color all edges of H and G in blue (original edges)

Add to H red edges between all unconnected vertex pairs (constraint edges)

Connect all vertex pairs in G by a red edge

H is subgraph isomorphic to G iff there exists a homomorphism from H ′ into G ′

Schulz et al. (Bonn) Partially Injective Homomorphisms 4 / 13

Injective Homomorphism

Graph homomorphism:
H: G:

Subgraph isomorphism can be reduced to homomorphism:

H: G: H': G':

Transform graphs H,G into H ′,G ′, respectively, as follows:

Color all edges of H and G in blue (original edges)

Add to H red edges between all unconnected vertex pairs (constraint edges)

Connect all vertex pairs in G by a red edge

H is subgraph isomorphic to G iff there exists a homomorphism from H ′ into G ′

Schulz et al. (Bonn) Partially Injective Homomorphisms 4 / 13

Partially Injective Homomorphism

Partially injective homomorphism requires injectivity constraints for only a subset
of vertex pairs in the pattern

⇒ i.e. add to H only a selection of red edges

Example:

v2 and v4 of H” must be mapped to distinct vertices in G ′

Schulz et al. (Bonn) Partially Injective Homomorphisms 5 / 13

Partially Injective Homomorphism

Partially injective homomorphism requires injectivity constraints for only a subset
of vertex pairs in the pattern

⇒ i.e. add to H only a selection of red edges

Example:

v2 and v4 of H” must be mapped to distinct vertices in G ′

Schulz et al. (Bonn) Partially Injective Homomorphisms 5 / 13

Partially Injective Homomorphism

Partially injective homomorphism requires injectivity constraints for only a subset
of vertex pairs in the pattern

⇒ i.e. add to H only a selection of red edges

Example:

H": G':
v1

v4

v2

v3

v2 and v4 of H” must be mapped to distinct vertices in G ′

Schulz et al. (Bonn) Partially Injective Homomorphisms 5 / 13

Partially Injective Homomorphism

Partially injective homomorphism requires injectivity constraints for only a subset
of vertex pairs in the pattern

⇒ i.e. add to H only a selection of red edges

Example:

H": G':
v1

v4

v2

v3

v2 and v4 of H” must be mapped to distinct vertices in G ′

Schulz et al. (Bonn) Partially Injective Homomorphisms 5 / 13

Main Idea

homomorphism

subgraph-isomorphism

partial injective homorphisms
with two red edges

partial injective homorphisms
with one red edge

v1

v2 v3

v4

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

v1

v2 v3

v4

v1

v2 v3

v4v1

v2 v3

v4 v1

v2 v3

v4

v1

v2 v3

v4v1

v2 v3

v4v1

v2 v3

v4

☺

☹

?

?

C
o

m
p

le
x

it
y

, Partially injective homomorphism can be decided in polynomial time if
the pattern graph (blue + red edges) has bounded tree-width.

Tree-width:

Positive integer measuring the ”tree-likeness”

Generally intractable problems become tractable for constant tree-width

Schulz et al. (Bonn) Partially Injective Homomorphisms 6 / 13

Main Idea

homomorphism

subgraph-isomorphism

partial injective homorphisms
with two red edges

partial injective homorphisms
with one red edge

v1

v2 v3

v4

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

v1

v2 v3

v4

v1

v2 v3

v4v1

v2 v3

v4 v1

v2 v3

v4

v1

v2 v3

v4v1

v2 v3

v4v1

v2 v3

v4

☺

☹

?

?

C
o

m
p

le
x

it
y

, Partially injective homomorphism can be decided in polynomial time if
the pattern graph (blue + red edges) has bounded tree-width.

Tree-width:

Positive integer measuring the ”tree-likeness”

Generally intractable problems become tractable for constant tree-width

Schulz et al. (Bonn) Partially Injective Homomorphisms 6 / 13

Main Idea

homomorphism

subgraph-isomorphism

partial injective homorphisms
with two red edges

partial injective homorphisms
with one red edge

v1

v2 v3

v4

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

v1

v2 v3

v4

v1

v2 v3

v4v1

v2 v3

v4 v1

v2 v3

v4

v1

v2 v3

v4v1

v2 v3

v4v1

v2 v3

v4

☺

☹

?

?

C
o

m
p

le
x

it
y

, Partially injective homomorphism can be decided in polynomial time if
the pattern graph (blue + red edges) has bounded tree-width.

Tree-width:

Positive integer measuring the ”tree-likeness”

Generally intractable problems become tractable for constant tree-width

Schulz et al. (Bonn) Partially Injective Homomorphisms 6 / 13

Main Idea

homomorphism

subgraph-isomorphism

partial injective homorphisms
with two red edges

partial injective homorphisms
with one red edge

v1

v2 v3

v4

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

v1

v2 v3

v4

v1

v2 v3

v4v1

v2 v3

v4 v1

v2 v3

v4

v1

v2 v3

v4v1

v2 v3

v4v1

v2 v3

v4

☺

☹

?

?

C
o

m
p

le
x

it
y

, Partially injective homomorphism can be decided in polynomial time if
the pattern graph (blue + red edges) has bounded tree-width.

Tree-width:

Positive integer measuring the ”tree-likeness”

Generally intractable problems become tractable for constant tree-width

Schulz et al. (Bonn) Partially Injective Homomorphisms 6 / 13

Main Idea

homomorphism

subgraph-isomorphism

partial injective homorphisms
with two red edges

partial injective homorphisms
with one red edge

v1

v2 v3

v4

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

v1

v2 v3

v4

v1

v2 v3

v4v1

v2 v3

v4 v1

v2 v3

v4

v1

v2 v3

v4v1

v2 v3

v4v1

v2 v3

v4

☺

☹

?

?

C
o

m
p

le
x

it
y

, Partially injective homomorphism can be decided in polynomial time if
the pattern graph (blue + red edges) has bounded tree-width.

Tree-width:

Positive integer measuring the ”tree-likeness”

Generally intractable problems become tractable for constant tree-width

Schulz et al. (Bonn) Partially Injective Homomorphisms 6 / 13

Main Idea

homomorphism

subgraph-isomorphism

partial injective homorphisms
with two red edges

partial injective homorphisms
with one red edge

v1

v2 v3

v4

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

v1

v2 v3

v4

v1

v2 v3

v4v1

v2 v3

v4 v1

v2 v3

v4

v1

v2 v3

v4v1

v2 v3

v4v1

v2 v3

v4

☺

☹

?

?

C
o

m
p

le
x

it
y

, Partially injective homomorphism can be decided in polynomial time if
the pattern graph (blue + red edges) has bounded tree-width.

Tree-width:

Positive integer measuring the ”tree-likeness”

Generally intractable problems become tractable for constant tree-width

Schulz et al. (Bonn) Partially Injective Homomorphisms 6 / 13

Main Idea

homomorphism

subgraph-isomorphism

partial injective homorphisms
with two red edges

partial injective homorphisms
with one red edge

v1

v2 v3

v4

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

v1

v2 v3

v4

v1

v2 v3

v4v1

v2 v3

v4 v1

v2 v3

v4

v1

v2 v3

v4v1

v2 v3

v4v1

v2 v3

v4

☺

☹

?

?

C
o

m
p

le
x

it
y

, Partially injective homomorphism can be decided in polynomial time if
the pattern graph (blue + red edges) has bounded tree-width.

Tree-width:

Positive integer measuring the ”tree-likeness”

Generally intractable problems become tractable for constant tree-width

Schulz et al. (Bonn) Partially Injective Homomorphisms 6 / 13

Main Idea

T
ree-w

id
th

 1
T

ree-w
id

th
 2

T
ree-w

id
th

 3
homomorphism

subgraph-isomorphism

partial injective homorphisms
with two red edges

partial injective homorphisms
with one red edge

v1

v2 v3

v4

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

ba

ab

v1

v2 v3

v4

v1

v2 v3

v4v1

v2 v3

v4 v1

v2 v3

v4

v1

v2 v3

v4v1

v2 v3

v4v1

v2 v3

v4

?

?

C
o

m
p

le
x

it
y

☺

☹

, Partially injective homomorphism can be decided in polynomial time if
the pattern graph (blue + red edges) has bounded tree-width.

Tree-width:

Positive integer measuring the ”tree-likeness”

Generally intractable problems become tractable for constant tree-width

Schulz et al. (Bonn) Partially Injective Homomorphisms 6 / 13

Our approach

Generate frequent trees w.r.t. partially injective homomorphism

i.e. original (blue) edges form a tree

and together with constraints (red egdes) form a graph of bounded tree-width

Mining algorithm lists all frequent patterns up to a user-defined size in
incremental polynomial time.

Pattern generation is based on refinement operator.

Schulz et al. (Bonn) Partially Injective Homomorphisms 7 / 13

Our approach

Generate frequent trees w.r.t. partially injective homomorphism

i.e. original (blue) edges form a tree

and together with constraints (red egdes) form a graph of bounded tree-width

Mining algorithm lists all frequent patterns up to a user-defined size in
incremental polynomial time.

Pattern generation is based on refinement operator.

Schulz et al. (Bonn) Partially Injective Homomorphisms 7 / 13

Our approach

Generate frequent trees w.r.t. partially injective homomorphism

i.e. original (blue) edges form a tree

and together with constraints (red egdes) form a graph of bounded tree-width

Mining algorithm lists all frequent patterns up to a user-defined size in
incremental polynomial time.

Pattern generation is based on refinement operator.

Schulz et al. (Bonn) Partially Injective Homomorphisms 7 / 13

Our approach

Generate frequent trees w.r.t. partially injective homomorphism

i.e. original (blue) edges form a tree

and together with constraints (red egdes) form a graph of bounded tree-width

Mining algorithm lists all frequent patterns up to a user-defined size in
incremental polynomial time.

Pattern generation is based on refinement operator.

Schulz et al. (Bonn) Partially Injective Homomorphisms 7 / 13

Our approach

Generate frequent trees w.r.t. partially injective homomorphism

i.e. original (blue) edges form a tree

and together with constraints (red egdes) form a graph of bounded tree-width

Mining algorithm lists all frequent patterns up to a user-defined size in
incremental polynomial time.

Pattern generation is based on refinement operator.

Schulz et al. (Bonn) Partially Injective Homomorphisms 7 / 13

Refinement Operator

Refinement step (utilizes definition of k-trees):

Idea for tree-width k = 2:

G:

(1) select a 2-clique

(2) add a vertex and connect it to the 2-clique

(3) color one edge blue

(4) color all others red

G ′ is a refinement of G . Both graphs are k-trees with tree-width 2.

Properties:

graphs are maximally constrained (i.e. adding another red edge increases the
tree-width)

the embedding decision problem is guaranteed to lie in P

Schulz et al. (Bonn) Partially Injective Homomorphisms 8 / 13

Refinement Operator

Refinement step (utilizes definition of k-trees):

Idea for tree-width k = 2:

→(1)
G:

(1) select a 2-clique

(2) add a vertex and connect it to the 2-clique

(3) color one edge blue

(4) color all others red

G ′ is a refinement of G . Both graphs are k-trees with tree-width 2.

Properties:

graphs are maximally constrained (i.e. adding another red edge increases the
tree-width)

the embedding decision problem is guaranteed to lie in P

Schulz et al. (Bonn) Partially Injective Homomorphisms 8 / 13

Refinement Operator

Refinement step (utilizes definition of k-trees):

Idea for tree-width k = 2:

→ →(1) (2)

G:

(1) select a 2-clique

(2) add a vertex and connect it to the 2-clique

(3) color one edge blue

(4) color all others red

G ′ is a refinement of G . Both graphs are k-trees with tree-width 2.

Properties:

graphs are maximally constrained (i.e. adding another red edge increases the
tree-width)

the embedding decision problem is guaranteed to lie in P

Schulz et al. (Bonn) Partially Injective Homomorphisms 8 / 13

Refinement Operator

Refinement step (utilizes definition of k-trees):

Idea for tree-width k = 2:

→ → →(1) (2) (3)

G:

(1) select a 2-clique

(2) add a vertex and connect it to the 2-clique

(3) color one edge blue

(4) color all others red

G ′ is a refinement of G . Both graphs are k-trees with tree-width 2.

Properties:

graphs are maximally constrained (i.e. adding another red edge increases the
tree-width)

the embedding decision problem is guaranteed to lie in P

Schulz et al. (Bonn) Partially Injective Homomorphisms 8 / 13

Refinement Operator

Refinement step (utilizes definition of k-trees):

Idea for tree-width k = 2:

→ → → →(1) (2) (3) (4)

G: G':

(1) select a 2-clique

(2) add a vertex and connect it to the 2-clique

(3) color one edge blue

(4) color all others red

G ′ is a refinement of G . Both graphs are k-trees with tree-width 2.

Properties:

graphs are maximally constrained (i.e. adding another red edge increases the
tree-width)

the embedding decision problem is guaranteed to lie in P

Schulz et al. (Bonn) Partially Injective Homomorphisms 8 / 13

Refinement Operator

Refinement step (utilizes definition of k-trees):

Idea for tree-width k = 2:

→ → → →(1) (2) (3) (4)

G: G':

(1) select a 2-clique

(2) add a vertex and connect it to the 2-clique

(3) color one edge blue

(4) color all others red

G ′ is a refinement of G . Both graphs are k-trees with tree-width 2.

Properties:

graphs are maximally constrained (i.e. adding another red edge increases the
tree-width)

the embedding decision problem is guaranteed to lie in P

Schulz et al. (Bonn) Partially Injective Homomorphisms 8 / 13

Refinement Operator

Refinement step (utilizes definition of k-trees):

Idea for tree-width k = 2:

→ → → →(1) (2) (3) (4)

G: G':

(1) select a 2-clique

(2) add a vertex and connect it to the 2-clique

(3) color one edge blue

(4) color all others red

G ′ is a refinement of G . Both graphs are k-trees with tree-width 2.

Properties:

graphs are maximally constrained (i.e. adding another red edge increases the
tree-width)

the embedding decision problem is guaranteed to lie in P

Schulz et al. (Bonn) Partially Injective Homomorphisms 8 / 13

Refinement Operator

Refinement step (utilizes definition of k-trees):

Idea for tree-width k = 2:

→ → → →(1) (2) (3) (4)

G: G':

(1) select a 2-clique

(2) add a vertex and connect it to the 2-clique

(3) color one edge blue

(4) color all others red

G ′ is a refinement of G . Both graphs are k-trees with tree-width 2.

Properties:

graphs are maximally constrained (i.e. adding another red edge increases the
tree-width)

the embedding decision problem is guaranteed to lie in P

Schulz et al. (Bonn) Partially Injective Homomorphisms 8 / 13

Evaluation Setup

We performed prediction tasks over molecular data

Each molecule represented as a graph has a binary label

SVMs were used to separate points representing molecular graphs in feature space
spanned by patterns

Schulz et al. (Bonn) Partially Injective Homomorphisms 9 / 13

Evaluation Setup

We performed prediction tasks over molecular data

Each molecule represented as a graph has a binary label

SVMs were used to separate points representing molecular graphs in feature space
spanned by patterns

Schulz et al. (Bonn) Partially Injective Homomorphisms 9 / 13

Evaluation Setup

We performed prediction tasks over molecular data

Each molecule represented as a graph has a binary label

SVMs were used to separate points representing molecular graphs in feature space
spanned by patterns

Schulz et al. (Bonn) Partially Injective Homomorphisms 9 / 13

Experiments I: Predictive Performance

Q: How does the predictive performance using patterns w.r.t. partially injective
homomorphism compare to patterns generated w.r.t. subgraph isomorphism?

Frequent Patterns MUTAG PTC NCI1 NCI109
s.g.i. graphs 91.99± 6.65 73.07± 9.34 89.33± 1.13 88.55± 1.77
s.g.i. trees 91.63± 5.89 73.08± 9.39 89.14± 1.19 88.37± 1.72
p.i.h. trees (k = 4) 90.49± 6.98 72.38± 8.02 88.30± 1.29 87.54± 2.03
p.i.h. trees (k = 3) 90.21± 8.36 73.24± 8.55 88.77± 1.32 87.77± 2.02
p.i.h. trees (k = 2) 76.92± 14.90 67.84± 6.53 87.68± 1.35 86.72± 1.66

Prediction measures stated as AUC values in % for different tree-width
choices k in contrast to freq. subgraphs and subtrees.

A: For already tree-width k = 3, the results are very close to those of ordinary
frequent trees (subgraph isomorphism).

Schulz et al. (Bonn) Partially Injective Homomorphisms 10 / 13

Experiments I: Predictive Performance

Q: How does the predictive performance using patterns w.r.t. partially injective
homomorphism compare to patterns generated w.r.t. subgraph isomorphism?

Frequent Patterns MUTAG PTC NCI1 NCI109
s.g.i. graphs 91.99± 6.65 73.07± 9.34 89.33± 1.13 88.55± 1.77
s.g.i. trees 91.63± 5.89 73.08± 9.39 89.14± 1.19 88.37± 1.72
p.i.h. trees (k = 4) 90.49± 6.98 72.38± 8.02 88.30± 1.29 87.54± 2.03
p.i.h. trees (k = 3) 90.21± 8.36 73.24± 8.55 88.77± 1.32 87.77± 2.02
p.i.h. trees (k = 2) 76.92± 14.90 67.84± 6.53 87.68± 1.35 86.72± 1.66

Prediction measures stated as AUC values in % for different tree-width
choices k in contrast to freq. subgraphs and subtrees.

A: For already tree-width k = 3, the results are very close to those of ordinary
frequent trees (subgraph isomorphism).

Schulz et al. (Bonn) Partially Injective Homomorphisms 10 / 13

Experiments I: Predictive Performance

Q: How does the predictive performance using patterns w.r.t. partially injective
homomorphism compare to patterns generated w.r.t. subgraph isomorphism?

Frequent Patterns MUTAG PTC NCI1 NCI109
s.g.i. graphs 91.99± 6.65 73.07± 9.34 89.33± 1.13 88.55± 1.77
s.g.i. trees 91.63± 5.89 73.08± 9.39 89.14± 1.19 88.37± 1.72
p.i.h. trees (k = 4) 90.49± 6.98 72.38± 8.02 88.30± 1.29 87.54± 2.03
p.i.h. trees (k = 3) 90.21± 8.36 73.24± 8.55 88.77± 1.32 87.77± 2.02
p.i.h. trees (k = 2) 76.92± 14.90 67.84± 6.53 87.68± 1.35 86.72± 1.66

Prediction measures stated as AUC values in % for different tree-width
choices k in contrast to freq. subgraphs and subtrees.

A: For already tree-width k = 3, the results are very close to those of ordinary
frequent trees (subgraph isomorphism).

Schulz et al. (Bonn) Partially Injective Homomorphisms 10 / 13

Experiments II: Injectivity Degree

Q: How does the degree of injectivity in the pattern matching operator influence
the predictive performance?

Setup:

the set of tree patterns is fixed
we gradually increased the number of red egdes by increasing the tree-width k
the degree of injectivity in patterns ranges from k = 1 (ordinary
homomorphism) to k = > (subgraph isomorphism)

100 200 500 1000 2000 all

0.7

0.8

0.9

Number of Patterns

A
U

C

NCI1

k = 1
k = 2
k = 3
k = 4
k = >

A: The predictive performance scales with the degree of injectivity of the
underlying pattern matching operator.

Schulz et al. (Bonn) Partially Injective Homomorphisms 11 / 13

Experiments II: Injectivity Degree

Q: How does the degree of injectivity in the pattern matching operator influence
the predictive performance?

Setup:
the set of tree patterns is fixed

we gradually increased the number of red egdes by increasing the tree-width k
the degree of injectivity in patterns ranges from k = 1 (ordinary
homomorphism) to k = > (subgraph isomorphism)

100 200 500 1000 2000 all

0.7

0.8

0.9

Number of Patterns

A
U

C

NCI1

k = 1
k = 2
k = 3
k = 4
k = >

A: The predictive performance scales with the degree of injectivity of the
underlying pattern matching operator.

Schulz et al. (Bonn) Partially Injective Homomorphisms 11 / 13

Experiments II: Injectivity Degree

Q: How does the degree of injectivity in the pattern matching operator influence
the predictive performance?

Setup:
the set of tree patterns is fixed
we gradually increased the number of red egdes by increasing the tree-width k

the degree of injectivity in patterns ranges from k = 1 (ordinary
homomorphism) to k = > (subgraph isomorphism)

100 200 500 1000 2000 all

0.7

0.8

0.9

Number of Patterns

A
U

C

NCI1

k = 1
k = 2
k = 3
k = 4
k = >

A: The predictive performance scales with the degree of injectivity of the
underlying pattern matching operator.

Schulz et al. (Bonn) Partially Injective Homomorphisms 11 / 13

Experiments II: Injectivity Degree

Q: How does the degree of injectivity in the pattern matching operator influence
the predictive performance?

Setup:
the set of tree patterns is fixed
we gradually increased the number of red egdes by increasing the tree-width k
the degree of injectivity in patterns ranges from k = 1 (ordinary
homomorphism) to k = > (subgraph isomorphism)

100 200 500 1000 2000 all

0.7

0.8

0.9

Number of Patterns

A
U

C

NCI1

k = 1
k = 2
k = 3
k = 4
k = >

A: The predictive performance scales with the degree of injectivity of the
underlying pattern matching operator.

Schulz et al. (Bonn) Partially Injective Homomorphisms 11 / 13

Experiments II: Injectivity Degree

Q: How does the degree of injectivity in the pattern matching operator influence
the predictive performance?

Setup:
the set of tree patterns is fixed
we gradually increased the number of red egdes by increasing the tree-width k
the degree of injectivity in patterns ranges from k = 1 (ordinary
homomorphism) to k = > (subgraph isomorphism)

100 200 500 1000 2000 all

0.7

0.8

0.9

Number of Patterns

A
U

C

NCI1

k = 1
k = 2
k = 3
k = 4
k = >

A: The predictive performance scales with the degree of injectivity of the
underlying pattern matching operator.

Schulz et al. (Bonn) Partially Injective Homomorphisms 11 / 13

Experiments II: Injectivity Degree

Q: How does the degree of injectivity in the pattern matching operator influence
the predictive performance?

Setup:
the set of tree patterns is fixed
we gradually increased the number of red egdes by increasing the tree-width k
the degree of injectivity in patterns ranges from k = 1 (ordinary
homomorphism) to k = > (subgraph isomorphism)

100 200 500 1000 2000 all

0.7

0.8

0.9

Number of Patterns

A
U

C

NCI1

k = 1
k = 2
k = 3
k = 4
k = >

A: The predictive performance scales with the degree of injectivity of the
underlying pattern matching operator.

Schulz et al. (Bonn) Partially Injective Homomorphisms 11 / 13

Experiments III: Runtimes

Q: How do runtimes of our algorithm compare to subgraph-isomorphism-based
graph miners?

MUTAG PTC NCI1 NCI109
Erdős-Rényi random graphs (unlabeled)
q = 1.0 q = 1.5 q = 2.0 q = 3.0

GASTON (EL) 0.1 0.2 2.6 2.7 2.8 54.6 mem err mem err
GASTON (RE) 0.3 1.0 8.5 8.6 5.0 39.5 1163.0 31061.4

FSG 0.7 4.1 30.2 29.9 194.2 10584.9 10888.4 10852.5
PIH Miner (k = 3) 0.8 3.4 27.3 24.1 0.3 1.3 2.8 8.4

Runtimes (in sec.) of our algorithm in comparison to GASTON and FSG
on molecular and artificial datasets.

A: While our algorithm is slower on real-world datasets, it is much faster on
(unlabeled) graphs of a higher structural complexity (i.e., higher value q).

Schulz et al. (Bonn) Partially Injective Homomorphisms 12 / 13

Experiments III: Runtimes

Q: How do runtimes of our algorithm compare to subgraph-isomorphism-based
graph miners?

MUTAG PTC NCI1 NCI109
Erdős-Rényi random graphs (unlabeled)
q = 1.0 q = 1.5 q = 2.0 q = 3.0

GASTON (EL) 0.1 0.2 2.6 2.7 2.8 54.6 mem err mem err
GASTON (RE) 0.3 1.0 8.5 8.6 5.0 39.5 1163.0 31061.4

FSG 0.7 4.1 30.2 29.9 194.2 10584.9 10888.4 10852.5
PIH Miner (k = 3) 0.8 3.4 27.3 24.1 0.3 1.3 2.8 8.4

Runtimes (in sec.) of our algorithm in comparison to GASTON and FSG
on molecular and artificial datasets.

A: While our algorithm is slower on real-world datasets, it is much faster on
(unlabeled) graphs of a higher structural complexity (i.e., higher value q).

Schulz et al. (Bonn) Partially Injective Homomorphisms 12 / 13

Experiments III: Runtimes

Q: How do runtimes of our algorithm compare to subgraph-isomorphism-based
graph miners?

MUTAG PTC NCI1 NCI109
Erdős-Rényi random graphs (unlabeled)
q = 1.0 q = 1.5 q = 2.0 q = 3.0

GASTON (EL) 0.1 0.2 2.6 2.7 2.8 54.6 mem err mem err
GASTON (RE) 0.3 1.0 8.5 8.6 5.0 39.5 1163.0 31061.4

FSG 0.7 4.1 30.2 29.9 194.2 10584.9 10888.4 10852.5
PIH Miner (k = 3) 0.8 3.4 27.3 24.1 0.3 1.3 2.8 8.4

Runtimes (in sec.) of our algorithm in comparison to GASTON and FSG
on molecular and artificial datasets.

A: While our algorithm is slower on real-world datasets, it is much faster on
(unlabeled) graphs of a higher structural complexity (i.e., higher value q).

Schulz et al. (Bonn) Partially Injective Homomorphisms 12 / 13

Summary

Partially Injective Homomorphisms:

a new kind of pattern matching operators

bridges the gap between homomorphism and subgraph isomorphism

dynamic pattern matching

In this work:

efficiency is guaranteed by bounded tree-width graphs

experimental results show that patterns do not lose much expressiveness
(compared to subgraph isomorphism)

Upcoming work:

Schulz et al. (Bonn) Partially Injective Homomorphisms 13 / 13

Summary

Partially Injective Homomorphisms:

a new kind of pattern matching operators

bridges the gap between homomorphism and subgraph isomorphism

dynamic pattern matching

In this work:

efficiency is guaranteed by bounded tree-width graphs

experimental results show that patterns do not lose much expressiveness
(compared to subgraph isomorphism)

Upcoming work:

Schulz et al. (Bonn) Partially Injective Homomorphisms 13 / 13

Summary

Partially Injective Homomorphisms:

a new kind of pattern matching operators

bridges the gap between homomorphism and subgraph isomorphism

dynamic pattern matching

In this work:

efficiency is guaranteed by bounded tree-width graphs

experimental results show that patterns do not lose much expressiveness
(compared to subgraph isomorphism)

Upcoming work:

Schulz et al. (Bonn) Partially Injective Homomorphisms 13 / 13

Summary

Partially Injective Homomorphisms:

a new kind of pattern matching operators

bridges the gap between homomorphism and subgraph isomorphism

dynamic pattern matching

In this work:

efficiency is guaranteed by bounded tree-width graphs

experimental results show that patterns do not lose much expressiveness
(compared to subgraph isomorphism)

Upcoming work:

Schulz et al. (Bonn) Partially Injective Homomorphisms 13 / 13

Summary

Partially Injective Homomorphisms:

a new kind of pattern matching operators

bridges the gap between homomorphism and subgraph isomorphism

dynamic pattern matching

In this work:

efficiency is guaranteed by bounded tree-width graphs

experimental results show that patterns do not lose much expressiveness
(compared to subgraph isomorphism)

Upcoming work:

Schulz et al. (Bonn) Partially Injective Homomorphisms 13 / 13

Summary

Partially Injective Homomorphisms:
a new kind of pattern matching operators
bridges the gap between homomorphism and subgraph isomorphism
dynamic pattern matching

In this work:
efficiency is guaranteed by bounded tree-width graphs
experimental results show that patterns do not lose much expressiveness
(compared to subgraph isomorphism)

Upcoming work:
The Two Most Common Pattern

Matching Operators in
Learning from Structured Data

Substructure Isomorphism
between Relational Structures

Homomorphism between
Relational Structures

ILP: ϴ-Subsumption Graph Mining:
Subgraph Isomorphism

Special Case: Graphs

Homomorphism between Graphs Injective Homomorphism
between Graphs

: better predictive performance

: generally NP-complete

+
_

: polynomially decidable for
 many graph classes
: poor predictive performance

+

_
Partially Injective
Homomorphism

Partia
l Substru

cture

Isomorphism

Schulz et al. (Bonn) Partially Injective Homomorphisms 13 / 13

Appendix

Schulz et al. (Bonn) Partially Injective Homomorphisms 1 / 6

Homomorphism & Subgraph Isomorphism

A homomorphism from a graph H (the pattern) into a graph G (the text) is a
mapping ϕ : V (H)→ V (G) that preserves the edges (i.e., uv ∈ E (H) implies
ϕ(u)ϕ(v) ∈ E (G) for all u, v ∈ V (H)).

Example:
H: G:

A subgraph isomorphism from H to G is an injective homomorphism
ψ : V (H)→ V (G) (i.e. ψ is a homomorphism from H into G and for all
u, v ∈ V (H) with u 6= v holds ψ(u) 6= ψ(v)).

Example:
H: G:

Schulz et al. (Bonn) Partially Injective Homomorphisms 2 / 6

Tree-width

A tree decomposition of a graph G = (V ,E) is a pair TD(G) = (T ,X) where

− T = (I ,F) is an unordered tree,

− X = {bag(i) : i ∈ I} is a family of subsets of V , s.t.

(i)
⋃

i∈I bag(i) = V
(ii) for every {u, v} ∈ E there is an i ∈ I with {u, v} ⊆ bag(i)
(iii) for every v ∈ V the set of nodes {i |v ∈ bag(i)} forms a subtree of T

The width of TD(G) is maxi |bag(i)| − 1

The tree-width of G is the minimum width over all tree decompositions of G

Example:

v1,v2,v3

v2,v3,v5

v3,v4,v5v1

v2

v3 v4

v5

v6
G: TD(G):

v2,v5,v6

TD(G) has a width of 2 which is also the tree-width of G .

Schulz et al. (Bonn) Partially Injective Homomorphisms 3 / 6

k-trees

Algorithmic definition of k-trees:

(i) A clique of k + 1 vertices is a k-tree and

(ii) given a k-tree Tk with n vertices, a k-tree with n + 1 vertices is obtained
from Tk by adding a new vertex v to Tk and connecting v to all vertices of a
k-clique of Tk .

Properties:

A k-tree has tree-width k

Adding an edge to a k − tree results in a graph of tree-width k + 1.

Schulz et al. (Bonn) Partially Injective Homomorphisms 4 / 6

Refinement Operator

Refinement step:

→ → → →(1) (2) (3) (4)

G: G':

(1) select a 2-clique

(2) add a vertex and connect it to the 2-clique

(3) color one edge blue

(4) color all others red

G ′ is a refinement of G . Both graphs are k-trees with k = 2.

Properties:

graphs are maximally constrained (i.e. adding another red edge increases the
tree-width)

the embedding decision problem is guaranteed to lie in P

Schulz et al. (Bonn) Partially Injective Homomorphisms 5 / 6

Partial Substructure Isomorphism

Partially Injective Homomorphisms can be generalized to first-order logic:

Let A and B be function-free first-order clauses. A partial substructure
isomorphism from A to B satisfying the injectivity constraints in C ⊆ [Var(A)]2 is
a substitution θ such that Aθ ⊆ B and for all xy ∈ C, xθ 6= yθ.

Example:

A = {P(x2, x1),P(x3, x1),P(x4, x1)}
B = {P(a1, a2),P(a3, a2)}
C = {x3x2, x4x2}

A': B':

x1 x2

x3 x4

a1 a2 a3

There is a partial substructure isomorphism from A to B w.r.t. constraints C iff A′

subsumes B ′.
Schulz et al. (Bonn) Partially Injective Homomorphisms 6 / 6

	Appendix

