Background

What are graph kernels?
Graph kernels are functions defning similarities between graphs. They allow for applicalions of machine learning methods such as Support vector Mal Graph classification task: Which class should the gray graph be assigned to?

Traditional graph kernels

 The majiority of traditional graph kernels are based on Haussle's' \mathcal{R}-convolution kerneland define graph similarity by comparing counts of mutual features. They are of the form

$$
k\left(G, G^{\prime}\right)=\sum_{f \in \mathcal{F}} \operatorname{count}(G, f) \cdot \operatorname{count}\left(G^{\prime}, f\right)
$$

ith feature domain \mathcal{F}, and count (G, f) denoting the frequency of feature f in G. Thus, with feature domain \mathcal{F}, and count (G, f) denoting the frequency
they compute the dot procuct between explicit feature vectors.
Example: Below, features correspond to node degrees where green is degree 1 , red
$\begin{array}{llll}6: 0 & 1 \times 0 & -v s- & 1 \times 0 \\ 0,0 & 6: 0 \\ 0 & 3 \times 0 & -v s- & 2 \times 0 \\ 0 & 1 \times 0 & -v s- & 1 \times 0\end{array}$
\Downarrow

$$
k\left(G, G^{\prime}\right)=1 \cdot 1+3 \cdot 2+1 \cdot 1
$$

Optimal transport distance

 e optimal transport distance is a distance function between probability distributions ased on the concept of optimal mass transportation. Intuitively speaking, it can be vew as the minimum effort necessary to transform one pile of earth into another. Whereas, the optimal transport distance has cubic complexity in general, its complexityis linear for the 1 -dimensional ground distance. The ground d distance defines the cost for shifting mass from one point to another.
More formally, for distributions X and Y of equal mass and a ground distance d defin
ing paiwwise distances between entries of X and Y, the optimal transport distance is

Example: Below, the cost for moving mass from index i to index j is equal to their Essolute difference, i.e. di,j)=|i-j|.Asthe displayed transport plan is optimal $x: \not \square_{1, ~}^{\square}, \square$,
Y: $\ddagger \square_{\square}^{\text {mone }}$
$W_{d}(x, y)$
$1-2|x|+|3-2| x \mid=2$

The Graph Filtration kernel - A concept overview

The Graph Filtration kernel is a graph similarity measure which considers graphs at multiple granularities. This is achieved by comparing feature The Graph Filtration kernel is a graph similarity measure which con
occurrence distributions over sequences of such graph resolutions.

Example

Graph filtrations

Histogram distance

Graph filtrations view graphs at different resolutions. A graph filtration is a
nested seauence of subgraphs which describes how a graph is constructed by grad$\frac{\text { nested sequence of subgra }}{\text { ually adding sets of edges. }}$
Formally, for a weighted graph $G=(V, E, w)$, a filtration $\mathcal{A}(G)$ is sequence

$$
G_{1} \subseteq G_{2} \subseteq \ldots \subseteq G_{k}=G
$$

where subgraph $G_{i}=\left(V, E_{i}, w\right)$ contains only edges exceeding threshold value α_{i}, i.e.,
$E_{i}=\left\{e: w(e) \geq \alpha_{i}\right\}$. Thus, filtration function \mathcal{A} is determined by values $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$.
Example: In street maps, it is often useful to consider subgraphs containing only roads of specific relevance. Such subgraphs highlight crucial infrastructure

Filtration histogram

ecord the number of feature occurences over filtratio
aphs. For every feature, a histogram displays the counts of features that appear in
each filtation graph
Formally: Given a graph G together with a length-k filtration $\mathcal{A}(G)$ and a feature f, the
Example: The highlighted feature corresponds to vertices with degree one,
counted across all fitration graphs. This information is stored in a histogram.

The Graph Filtration kemel compares feature distribution This conelis by computing the optimal transport distance between filtration histograms. Roushly by computing the optimal transport distance between filtration histograms. Roughly
speakings the optimal transportt distance is the minimum cost necessary to transform one histogram into another. Since we would like eto compare feature occurances in a see-
quence, the ground distance needs to be - -limenional. This ground distance describes quence, the ground distance needs to be 1 -dimensional. This ground dis
the cost for shifting mass from one point in the histogram to another.
The filtation histogram distance between the feature-f histograms $\phi_{\phi}(G)$ and $\phi_{f}\left(G^{\prime}\right)$ is
given by the ootimal transport distance $\mathcal{W}_{d}\left(\phi_{f}(G), \phi_{f}\left(G^{\prime}\right)\right.$ emploving the 1 - -imensional given by the optimal transport distance $\mathcal{W}_{d}\left(\phi_{f}(G), \phi_{f}\left(G^{\prime}\right)\right.$) employing the 1 -dimensio ground distance $d\left(\alpha_{i}, \alpha_{j}\right)=\left|\alpha_{i}-\alpha_{j}\right|$

Base kernels

The filtration histogram distance gives rise to proper kernel functions. This is achieved by "transforming" the distance measure into a similarity, that is, a kernel. Such a kerne $k_{f}\left(\overline{G, G^{\prime}}\right)$ compares graphs G and G^{\prime} w.r.t. their feature distributions of feature f ove graph filtrations $\mathcal{A}(G)$, resp. $\mathcal{A}\left(G^{\prime}\right)$.
are of the form
$\kappa_{f}\left(G, G^{\prime}\right)=e^{-\eta}$ \qquad

Graph Filtration kerne

The final Graph Filtration kernel is a linear combination of base keta kernel is concerned with a single feature $f \in \mathcal{F}$. Hence, an aggregation of base kernels yields a graph similarity over all considered features in \mathcal{F}
The Filtration Graph kernel is defined as

$$
\begin{aligned}
& K_{\text {Rit }}^{F}\left(G, G^{\prime}\right)=\sum_{f \in F} \beta \beta^{\prime} k_{f}\left(G, G^{\prime}\right) \text {. }
\end{aligned}
$$

Details: Computing the optimal transport distance reauires equal mass of histograms. Thus,

The Weisfeiler-Lehman Filtration kernel

The Weisfeiler-Lehman Filtration kernel is an instance of the Graph Filtration kerne
It employs the well-known Weisfeiler-Lehman features and, hence, compares graphs It employs the well-known Weisfeiler-Lehman features and, hence, compares graph
based on the Weisfeiler-Lehman feature distribution over graph filtrations. Weisfeile-Lehman features are generated by an iterative node relabeling procedure
which compresses a node's label and that of tits neighbors into a new label

Theoretical results for the WI Filtration kerne

For the Weisfeier-Lehman Filtration kernel, we show results about its linear complexity
as well as it expressive power Wellas its expressive power

heore

The Weisfeile-Lehman filtration kernel $K_{\text {Filt }}^{\text {tith }}\left(G, G^{\prime \prime}\right)$ on graphs G, G^{\prime} can be computed
in time $O(h k m$, where
K is number of Weisfeiler-Lehman iterations,

* k is the length of the filtration sequen,

Theorem

There exists a filtration function \mathcal{A} such that $\phi_{f}^{A}(G)=\phi_{f}^{A}\left(G^{\prime}\right)$ for all WL feature
$f \in \mathcal{J}_{W L}$ if and only if G and G^{\prime} are isomorphic. dirferentortere between all non-isomorphic graphs.
in

Experimental evaluation of the WL Filtration kerne

 The Weisfeiler-Lehman Filtration kerrel significantly outperforms other graph classifcation methods on several real-world benchnmark datasets.
 For the EGO datasets,
top performing results.

