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Background

What are graph kernels?

Graph kernels are func ons defining similari es between graphs. They allow for applica-

ons of machine learning methods such as Support Vector Machines. One of the most

successful graph classifica on methods relies on graph kernels.

Graph classifica on task: Which class should the gray graph be assigned to?

Traditional graph kernels

The majority of tradi onal graph kernels are based on Haussler’s R-convolu on kernel

and define graph similarity by comparing counts of mutual features. They are of the form

k(G, G′) =
∑
f∈F

count(G, f ) · count(G′, f )

with feature domain F , and count(G, f ) deno ng the frequency of feature f in G. Thus,

they compute the dot product between explicit feature vectors.

Example: Below, features correspond to node degrees where green is degree 1, red

is degree 2, and blue is degree 3.

Optimal transport distance

The op mal transport distance is a distance func on between probability distribu ons

based on the concept of op mal mass transporta on. Intui vely speaking, it can be

viewed as the minimum effort necessary to transform one pile of earth into another.

Whereas, the op mal transport distance has cubic complexity in general, its complexity

is linear for the 1-dimensional ground distance. The ground distance defines the cost for

shi ing mass from one point to another.

More formally, for distribu ons X and Y of equal mass and a ground distance d defin-

ing pairwise distances between entries of X and Y , the op mal transport distance is

denoted by Wd(X, Y ).

Example: Below, the cost for moving mass from index i to index j is equal to their

absolute difference, i.e., d(i, j) = |i − j|. As the displayed transport plan is op mal,

the op mal transport distance is simply the sum of the red and green colored costs.

The Graph Filtration kernel - A concept overview

The Graph Filtra on kernel is a graph similarity measure which considers graphs at mul ple granulari es. This is achieved by comparing feature
occurrence distribu ons over sequences of such graph resolu ons.

From graph filtra ons to kernels:
Graph filtra ons

We view graphs at in-

creasing resolu on levels

by considering only sub-

sets of all edges accord-

ing to their relevance.

Filtra on histograms

The number of feature oc-

curences over the course of

filtra on sequences is tracked

and expressed in form of fea-

ture distribu on histograms.

Histogram distance

For each feature, the

feature distribu on his-

tograms are compared

using op mal transport

concepts.

Base kernels

The histogram distance is

“transformed” into a kernel

func on which compares

graphs w.r.t. a specific fea-

ture.

Graph Filtra on kernel

The Filtra on Graph kernel

is a linear combina on of

base kernels. It compares

graphs based on different

resolu ons of graphs.

Example:

Graph filtrations

Graph filtra ons view graphs at different resolu ons. A graph filtra on is a

nested sequence of subgraphs which describes how a graph is constructed by grad-

ually adding sets of edges.

Formally, for a weighted graph G = (V, E, w), a filtra on A(G) is a sequence
G1 ⊆ G2 ⊆ . . . ⊆ Gk = G

where subgraph Gi = (V, Ei, w) contains only edges exceeding threshold value αi, i.e.,

Ei = {e : w(e) ≥ αi}. Thus, filtra on func on A is determined by values {α1, . . . , αk}.

Example: In street maps, it is o en useful to consider subgraphs containing only

roads of specific relevance. Such subgraphs highlight crucial infrastructure.

Filtration histograms

Graph filtra on histograms record the number of feature occurences over filtra on

graphs. For every feature, a histogram displays the counts of features that appear in

each filtra on graph.

Formally: Given a graph G together with a length-k filtra on A(G) and a feature f , the
func on φA

f : G → Rk maps G to its filtra on histogram.

Example: The highlighted feature corresponds to ver ces with degree one. It is

counted across all filtra on graphs. This informa on is stored in a histogram.

Histogram distance

The Graph Filtra on kernel compares feature distribu ons. This comparison is done

by compu ng the op mal transport distance between filtra on histograms. Roughly

speaking, the op mal transport distance is the minimum cost necessary to transform

one histogram into another. Since we would like to compare feature occurences in a se-

quence, the ground distance needs to be 1-dimensional. This ground distance describes

the cost for shi ing mass from one point in the histogram to another.

The filtra on histogram distance between the feature-f histograms φf(G) and φf(G′) is
given by the op mal transport distance Wd(φf(G), φf(G′)) employing the 1-dimensional

ground distance d(αi, αj) = |αi − αj|.

Base kernels

The filtra on histogram distance gives rise to proper kernel func ons. This is achieved

by “transforming” the distance measure into a similarity, that is, a kernel. Such a kernel

κf(G, G′) compares graphs G and G′ w.r.t. their feature distribu ons of feature f over

graph filtra ons A(G), resp. A(G′).
These so-called base kernels are of the form

κf(G, G′) = e−γWd(φf(G),φf(G′)).

Graph Filtration kernel

The final Graph Filtra on kernel is a linear combina on of base kernels. Each such base

kernel is concerned with a single feature f ∈ F . Hence, an aggrega on of base kernels

yields a graph similarity over all considered features in F .

The Filtra on Graph kernel is defined as

KF
Filt(G, G′) =

∑
f∈F

ββ′κf(G, G′).

Details: Compu ng the op mal transport distance requires equal mass of histograms. Thus,

a mass-normalisa on is necessary as a first step. This, however, results in a loss of feature

frequency informa on. In order to “reverse” this disadvantage, each κf(G, G′) is weighted by

the original histogram masses β = ||φf(G)||1 and β′ = ||φf(G′)||1.

TheWeisfeiler-Lehman Filtration kernel

The Weisfeiler-Lehman Filtra on kernel is an instance of the Graph Filtra on kernel.

It employs the well-known Weisfeiler-Lehman features and, hence, compares graphs

based on the Weisfeiler-Lehman feature distribu on over graph filtra ons.

Weisfeiler-Lehman features are generated by an itera ve node relabeling procedure

which compresses a node’s label and that of its neighbors into a new label.

Theoretical results for theWL Filtration kernel

For the Weisfeiler-Lehman Filtra on kernel, we show results about its linear complexity

as well as its expressive power.

Theorem

TheWeisfeiler-Lehman filtra on kernel KFWL

Filt (G, G′) on graphs G, G′ can be computed

in me O(hkm), where

h is number of Weisfeiler-Lehman itera ons,

k is the length of the filtra on sequence, and

m is the number of edges in G and G′.

Theorem

There exists a filtra on func on A such that φA
f (G) = φA

f (G′) for all WL features

f ∈ FWL if and only if G and G′ are isomorphic.

Furthermore, for such a filtra on func on A, the kernel KFWL

Filt is complete, i.e., it can

differen ate between all non-isomorphic graphs.

Experimental evaluation of theWL Filtration kernel

The Weisfeiler-Lehman Filtra on kernel significantly outperforms other graph classifi-

ca on methods on several real-world benchmark datasets.
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For the EGO datasets, filtra ons of length at most k = 3 are sufficient to obtain overall

top performing results.
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