Graph Filtration Kernels

Till Schulz, Pascal Welke, Stefan Wrobel

The task of graph classification is among the most common machine learning tasks:

One of the most successful graph classification methods rely on graph kernels.

Most traditional graph kernels define graph similarity by comparing counts of mutual features:

$$
k\left(G, G^{\prime}\right)=\sum_{f \in \mathcal{F}} \operatorname{count}(G, f) \cdot \operatorname{count}\left(G^{\prime}, f\right)
$$

with

- feature domain \mathcal{F}, and
- count (G, f) denoting the frequency of f in G.

$$
\begin{array}{ll}
\operatorname{count}(G, O)=1 & \operatorname{count}(G, O)=1 \\
\operatorname{coont}(G, O)=3 & \operatorname{count}(G, O)=2 \\
\operatorname{count}(G, O)=1 & \operatorname{count}(G, O)=1
\end{array}
$$

$$
k\left(G, G^{\prime}\right)=1 \cdot 1+3 \cdot 2+1 \cdot 1
$$

Graph at Different Scales

Often, graphs can be viewed at different resolutions:

- Street maps: Roads may be of different relevance.

- Social networks: Friendships may be of different significance.

Graph Filtrations

Graph filtrations are nested subgraph sequences

$$
G_{1} \subseteq G_{2} \subseteq \ldots \subseteq G_{k}=G
$$

which view graph G at different resolutions.

This concept let's us generate feature distribution histograms:

Traditional graph kernels:
Compare feature counts.

Graph filtration kernels:

Compare feature distributions over filtrations.

Filtration Histogram Distance

Q: How are such filtration histograms being compared?

A natural distance measure on distributions is the optimal transport distance.

- Informally: It is the minimum effort necessary to turn one histogram into another.

Filtration Histogram Distance: Ground Distance

Ground distance: Defines the cost for moving mass from one point to another.

Comparing filtration histograms requires a 1-dim. ground distance since we compare feature occurrences in a sequence:

$$
d\left(\alpha_{i}, \alpha_{j}\right)=\left|\alpha_{i}-\alpha_{j}\right|
$$

where values $\alpha_{i} \in \mathbb{R}_{\geq 0}$ are associated with each histogram index.

$$
\begin{aligned}
& \text { Costs: } \\
& \begin{array}{l}
d\left(\alpha_{1}, \alpha_{2}\right)=|1-2| \times 1 \\
d\left(\alpha_{3}, \alpha_{2}\right)=|3-2| \times 1
\end{array}
\end{aligned}
$$

Optimal transport distance:

$$
W_{d}\left(H_{1}, H_{2}\right)=|1-2| \times 1+|3-2| \times 1=2
$$

The filtration histogram distance gives rise to proper base kernels:

$$
K_{0}\left(G, G^{\prime}\right)=\exp \left(-\gamma W_{d}(\square, \square, \square)\right)
$$

More generally:

$$
\kappa_{f}\left(G, G^{\prime}\right)=\exp \left(-\gamma \mathcal{W}_{d}\left(H_{f}(G), H_{f}\left(G^{\prime}\right)\right)\right.
$$

where $\gamma \geq 0$ and $H_{f}(G)$ is the filtration histogram w.r.t. feature f.

The kernel $\kappa_{f}\left(G, G^{\prime}\right)$ compares G and G^{\prime} w.r.t. to a single feature f.

The Graph Filtration Kernel is a linear combination of base kernels κ_{f} :

$$
K_{\text {Filt }}^{\mathcal{F}}=\sum_{f \in \mathcal{F}} \beta \beta^{\prime} \kappa_{f}\left(G, G^{\prime}\right)
$$

Details:

- Computing the optimal transport distance between histograms requires equal mass.
- Thus, a mass-normalization is necessary.
- This, however, removes frequency information.
- To "reverse" this, $\kappa_{f}\left(G, G^{\prime}\right)$ is weighted by the original histogram masses $\beta=\left\|H_{f}(G)\right\|_{1}$ and $\beta^{\prime}=\left\|H_{f}\left(G^{\prime}\right)\right\|_{1}$.

The Weisfeiler-Lehman Method

Graph Filtration Kernels work for any kind of feature.

In the following, we consider a specific type of feature:
Weisfeiler-Lehman labels.

Weisfeiler-Lehman Filtration Kernel: Complexity

The Weisfeiler-Lehman Filtration Kernel has linear complexity:
Theorem
The Weisfeiler-Lehman filtration kernel $K_{\text {Filt }}^{\mathcal{F} W L}\left(G, G^{\prime}\right)$ on graphs G, G^{\prime} can be computed in time $O(h k m)$, where

- h is the number of performed iterations,
- k is the filtration length,
- and m denotes the number of edges.

Weisfeiler-Lehman Filtration Kernel: Expressivity

Tracking Weisfeiler-Lehman labels over filtrations increases expressivity:

Theorem (simplified)

There exist filtrations such that the Weisfeiler-Lehman Filtration kernel is complete, i.e., it can distinguish all non-isomorphic graphs.

Weisfeiler-Lehman Filtration Kernel: Evaluation

1. The Weisfeiler-Lehman Filtration Kernel outperforms state-of-the-art methods on several benchmark datasets.
2. Short filtrations are often sufficient, i.e. considering $G_{1} \subseteq G_{2} \subseteq \ldots \subseteq G_{k}$ for small values k leads to good predictive performances.

- Kernel runtime complexity increases by only a small linear factor.

3. Experiments on synthetic datasets empirically confirm the theoretical results on the kernel expressivity.

Conclusion

- Graph Filtration Kernels compare graphs on different resolutions:

- We introduced a kernel instance: The Weisfeiler-Lehman Filtration Kernel
- has linear complexity, and
- yields complete kernels.
- The Weisfeiler-Lehman Filtration Kernel leads to significant performance increases for several real-world benchmark datasets.

