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Graph Classification
Graph Filtration Kernels

The task of graph classification is among the most common machine learning tasks:

One of the most successful graph classification methods rely on graph kernels.
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Traditional Kernels
Graph Filtration Kernels

Most traditional graph kernels define graph similarity
by comparing counts of mutual features:

k(G ,G ′) =
∑
f ∈F

count(G , f ) · count(G ′, f )

with
• feature domain F , and
• count(G , f ) denoting the frequency of f in G .



Till Schulz 4/15

Graph at Different Scales
Graph Filtration Kernels

Often, graphs can be viewed at different resolutions:

• Street maps: Roads may be of different relevance.

• Social networks: Friendships may be of different significance.
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Graph Filtrations
Graph Filtration Kernels

Graph filtrations are nested subgraph sequences

G1 ⊆ G2 ⊆ . . . ⊆ Gk = G

which view graph G at different resolutions.

This concept let’s us generate feature distribution histograms:
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Graph Filtrations Kernels: Idea
Graph Filtration Kernels

Traditional graph kernels:
Compare feature counts.

Graph filtration kernels:
Compare feature distributions over filtrations.
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Filtration Histogram Distance
Graph Filtration Kernels

Q: How are such filtration histograms being compared?

A natural distance measure on distributions is the optimal transport distance.

• Informally : It is the minimum effort necessary to turn one histogram into another.
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Filtration Histogram Distance: Ground Distance
Graph Filtration Kernels

Ground distance: Defines the cost for moving mass
from one point to another.

Comparing filtration histograms requires a
1-dim. ground distance since we compare feature
occurrences in a sequence:

d(αi , αj) = |αi − αj |

where values αi ∈ R≥0 are associated with each his-
togram index.
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From Distances to Similarities
Graph Filtration Kernels

The filtration histogram distance gives rise to proper base kernels:

More generally:
κf (G ,G

′) = exp(−γ Wd(Hf (G ),Hf (G
′))

where γ ≥ 0 and Hf (G ) is the filtration histogram w.r.t. feature f .

The kernel κf (G ,G ′) compares G and G ′ w.r.t. to a single feature f .
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The Graph Filtration Kernel
Graph Filtration Kernels

The Graph Filtration Kernel is a linear combination of base kernels κf :

KFFilt =
∑
f ∈F

ββ′κf (G ,G
′)

Details:

• Computing the optimal transport distance between histograms requires equal mass.
• Thus, a mass-normalization is necessary.
• This, however, removes frequency information.
• To “reverse” this, κf (G ,G ′) is weighted by the original histogram masses
β = ||Hf (G )||1 and β′ = ||Hf (G

′)||1.
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The Weisfeiler-Lehman Method
Graph Filtration Kernels

Graph Filtration Kernels work for any kind of feature.

In the following, we consider a specific type of feature:
Weisfeiler-Lehman labels.
• Iterative node relabeling by compressing each

node’s label and that of its neighbors.



Till Schulz 12/15

Weisfeiler-Lehman Filtration Kernel: Complexity
Graph Filtration Kernels

The Weisfeiler-Lehman Filtration Kernel has linear complexity:

Theorem

The Weisfeiler-Lehman filtration kernel KFWL
Filt (G ,G ′) on graphs G ,G ′ can be computed

in time O(hkm), where
• h is the number of performed iterations,
• k is the filtration length,
• and m denotes the number of edges.
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Weisfeiler-Lehman Filtration Kernel: Expressivity
Graph Filtration Kernels

Tracking Weisfeiler-Lehman labels over filtrations increases expressivity:

Theorem (simplified)
There exist filtrations such that the Weisfeiler-Lehman Filtration kernel is complete,
i.e., it can distinguish all non-isomorphic graphs.
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Weisfeiler-Lehman Filtration Kernel: Evaluation
Graph Filtration Kernels

1. The Weisfeiler-Lehman Filtration Kernel outperforms state-of-the-art methods on
several benchmark datasets.

2. Short filtrations are often sufficient, i.e. considering G1 ⊆ G2 ⊆ . . . ⊆ Gk for small
values k leads to good predictive performances.

– Kernel runtime complexity increases by only a small linear factor.

3. Experiments on synthetic datasets empirically confirm the theoretical results on
the kernel expressivity.
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Conclusion
Graph Filtration Kernels

• Graph Filtration Kernels compare graphs on different resolutions:

• We introduced a kernel instance: The Weisfeiler-Lehman Filtration Kernel
– has linear complexity, and
– yields complete kernels.

• The Weisfeiler-Lehman Filtration Kernel leads to significant performance increases
for several real-world benchmark datasets.


