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Graph Classification

Graph Filtration Kernels

The task of graph classification is among the most common machine learning tasks:
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One of the most successful graph classification methods rely on graph kernels.
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Traditional Kernels

Graph Filtration Kernels
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k(G.G') =11+ 3:2 + 11
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Graph at Different Scales

Graph Filtration Kernels

Often, graphs can be viewed at different resolutions:

e Street maps: Roads may be of different relevance.
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Graph Filtrations

Graph Filtration Kernels

Graph filtrations are nested subgraph sequences
GGCGC...CG=6G

which view graph G at different resolutions.

This concept let's us generate feature distribution histograms:
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Graph Filtrations Kernels: Idea

Graph Filtration Kernels

Traditional graph kernels:
Compare feature counts.
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Graph filtration kernels:
Compare feature distributions over filtrations.
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Filtration Histogram Distance

Graph Filtration Kernels

Q: How are such filtration histograms being compared?
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A natural distance measure on distributions is the optimal transport distance.

e [nformally: It is the minimum effort necessary to turn one histogram into another.
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Filtration Histogram Distance: Ground Distance

Graph Filtration Kernels

Ground distance: Defines the cost for moving mass
from one point to another.

Comparing  filtration  histograms  requires  a
1-dim. ground distance since we compare feature
occurrences in a sequence:

C/(Oé,‘, Oéj) = ]a,- — OéJ'|

where values a; € R>q are associated with each his-
togram index.
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Costs:
d(ey, )= |1-2]x4
d(ds, ) = [3-2]x4

Opkimal transpord dislonce:
Wy (Hy Hy) = H-2ixd+13-21x1=2
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From Distances to Similarities

Graph Filtration Kernels

The filtration histogram distance gives rise to proper base kernels:

o(6.6) = exp (g Wa (Bl Il )

More generally:
#e(G, G') = exp(—y Wa(Hr(G), H(G))

where v > 0 and H¢(G) is the filtration histogram w.r.t. feature f.

The kernel k¢(G, G') compares G and G’ w.r.t. to a single feature f.
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The Graph Filtration Kernel

Graph Filtration Kernels

The Graph Filtration Kernel is a linear combination of base kernels x¢:

Kéie =Y BB'ke(G,G')

feF

Details:

Computing the optimal transport distance between histograms requires equal mass.
Thus, a mass-normalization is necessary.

This, however, removes frequency information.

To “reverse” this, kf(G, G') is weighted by the original histogram masses

B =|IHe(G)[r and B" = [[Hr(G')[1-
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The Weisfeiler-Lehman Method

Graph Filtration Kernels

Graph Filtration Kernels work for any kind of feature. O/ \O
\_/
Q
In the following, we consider a specific type of feature: 3

Weisfeiler-Lehman labels.

e |terative node relabeling by compressing each f"g 1:8
1] . . X

node’s label and that of its neighbors. 1xO 1xO

1x© 1xO
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Weisfeiler-Lehman Filtration Kernel: Complexity

Graph Filtration Kernels

The Weisfeiler-Lehman Filtration Kernel has linear complexity:

Theorem

The Weisfeiler-Lehman filtration kernel Ki-jl"t”(G , G') on graphs G, G' can be computed
in time O(hkm), where

® h is the number of performed iterations,

® k is the filtration length,

® and m denotes the number of edges.
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Weisfeiler-Lehman Filtration Kernel: Expressivity

Graph Filtration Kernels

Tracking Weisfeiler-Lehman labels over filtrations increases expressivity:

Theorem (simplified)

There exist filtrations such that the Weisfeiler-Lehman Filtration kernel is complete,
i.e., it can distinguish all non-isomorphic graphs.
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Welisfeiler-Lehman Filtration Kernel: Evaluation

Graph Filtration Kernels

1. The Weisfeiler-Lehman Filtration Kernel outperforms state-of-the-art methods on
several benchmark datasets.

2. Short filtrations are often sufficient, i.e. considering G; C G, C ... C G for small
values k leads to good predictive performances.
— Kernel runtime complexity increases by only a small linear factor.

3. Experiments on synthetic datasets empirically confirm the theoretical results on
the kernel expressivity.
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Conclusion

Graph Filtration Kernels

e Graph Filtration Kernels compare graphs on different resolutions:
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® \We introduced a kernel instance: The Weisfeiler-Lehman Filtration Kernel

— has linear complexity, and
— vyields complete kernels.
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® The Weisfeiler-Lehman Filtration Kernel leads to significant performance increases
for several real-world benchmark datasets.
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