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Abstract

The majority of popular graph kernels is based on the con-
cept of Haussler’s R-convolution kernel and defines graph
similarities in terms of mutual substructures. In this work, we
enrich these similarity measures by considering graph filtra-
tions: Using meaningful orders on the set of edges, which
allow to construct a sequence of nested graphs, we can con-
sider a graph at multiple granularities. A key concept of our
approach is to track graph features over the course of such
graph resolutions. Rather than to simply compare frequen-
cies of features in graphs, this allows for their comparison in
terms of when and for how long they exist in the sequences.
In this work, we propose a family of graph kernels that in-
corporate these existence intervals of features. While our ap-
proach can be applied to arbitrary graph features, we par-
ticularly highlight Weisfeiler-Lehman vertex labels, leading
to efficient kernels. We show that using Weisfeiler-Lehman
labels over certain filtrations strictly increases the expres-
sive power over the ordinary Weisfeiler-Lehman procedure
in terms of deciding graph isomorphism. In fact, this result
directly yields more powerful graph kernels based on such
features and has implications to graph neural networks due to
their close relationship to the Weisfeiler-Lehman method. We
empirically validate the expressive power of our graph ker-
nels and show significant improvements over state-of-the-art
graph kernels in terms of predictive performance on various
real-world benchmark datasets.

Introduction
Graph-structured data is prevalent in countless domains
such as social networks, biological interaction graphs and
molecules. A central task on this kind of data is the clas-
sification of graphs. Perhaps the most established machine
learning methods for graph classification are based on
graph kernels which, even in the advent of neural network
approaches, remain highly relevant due to their remark-
able predictive performance (Kriege, Johansson, and Mor-
ris 2020). The majority of graph kernels are instances of
Haussler’s R-convolution kernel (Haussler 1999) which de-
fine graph similarity in terms of pairwise similarities be-
tween the graphs’ substructures. Some well-known repre-
sentatives are the Weisfeiler-Lehman graph kernels (Sher-
vashidze et al. 2011), the shortest-path kernel (Borgwardt

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Kriegel 2005) and the cyclic pattern kernel (Horváth,
Gärtner, and Wrobel 2004). Generally, such kernels revert
to simply comparing counts of mutual substructures. We re-
fer to these kernels as histogram kernels. While they prove
to be successful in many classification tasks, their notion of
comparing features is often too rigid.

Motivated by this limitation, we introduce a family of
graph kernels which regard a graph at multiple levels of res-
olution. This is realized using the concept of graph filtra-
tions, which define sequences of nested subgraphs that dif-
fer only in the sets of edges. Such a sequence can be viewed
as incremental refinements that construct a graph by grad-
ually adding sets of edges. An example depicting this con-
cept is found in Fig. 1. Clearly, with changing sets of edges,
the graph features change as well. That is, features occur-
ring at some point in the sequence may disappear at a later
moment. In this work, we track such feature existence in-
tervals which allows for a comparison not only in terms of
feature frequency but also by when and for how long they
exist. This comparison of feature occurrence distributions is
realized using the Wasserstein distance which, using recent
results, allows for proper kernel functions on this kind of in-
formation. A benefit of this approach is the kernels’ ability
to handle continuous edge attributes.

Our main contributions are summarized as follows:

1. We introduce a general graph kernel framework which
defines similarity by comparing graph feature occurrence
distributions over sequences of graph resolutions and
show that such kernels generalize histogram kernels.

2. We particularly consider the well-known Weisfeiler-
Lehman subtree features and show that there exist fil-
tration kernels using such features which strictly in-
crease the expressive power over the ordinary Weisfeiler-
Lehman subtree kernel.

3. We empirically validate our theoretical findings on the
expressive power of our kernels and furthermore provide
experiments on real-world benchmark datasets which
show a favorable performance of our approach compared
to state-of-the-art graph kernels.

Background
Graph kernels. Kernels are functions of the form k :
X×X → R which define similarity measures on non-empty
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sets X . More precisely, k is a kernel if there exists a map-
ping φ : X → Hk with k(x, y) = ⟨φ(x), φ(y)⟩ where ⟨·, ·⟩
is the inner product in the associated Hilbert space Hk. With
Haussler’s work on convolution kernels over discrete struc-
tures (Haussler 1999), kernel methods became widely appli-
cable on graphs. The concept of R-convolution kernels pro-
vides a general framework which can be used to construct
graph kernels by defining graph similarity in terms of their
aggregated substructure similarities. More formally, let there
be a function decomposing the graph G into the set of its
substructures XG. Then, for graphs G,G′, the (simplified)
R-convolution kernel is defined by

k(G,G′) =
∑

(x,y)∈XG×XG′

κ(x, y) (1)

where κ(x, y) is a kernel on the substructures. To guarantee
convergence, we assume XG to be finite for each G. As this
decomposition into graph substructures can be perceived as
a feature extraction process, we will commonly refer to such
substructures as features. In a majority of graph kernels the
function κ is simply the Dirac delta which amounts to 1 if
the features x and y are equivalent and 0 otherwise.1 Thus,
k(G,G′) essentially measures graph similarity by counting
pairs of equivalent features. Some well-known examples are
the Weisfeiler-Lehman subtree kernel (Shervashidze et al.
2011) and cyclic pattern kernel (Horváth, Gärtner, and Wro-
bel 2004). Such kernels can alternatively be described by the
inner product of explicit feature vectors

φ(G) = [c(f1(G)), c(f2(G)), . . .] (2)

where c(fi(G)) indicates the count of feature fi ∈ F in
graph G over some fixed feature domain F . We refer to this
kind of kernels as histogram kernels. Note that histogram
kernels can equivalently be expressed as a sum of feature
frequency products, i.e.,

KF
H(G,G) =

∑
f∈F

c(f(G)) c(f(G′)) . (3)

Wasserstein distance. The Wasserstein distance is a dis-
tance function between probability distributions based on
the concept of optimal mass transportation. In the follow-
ing, we specifically consider the 1-Wasserstein distance for
discrete distributions, i.e., histograms, and refer to it as the
Wasserstein distance. For more general definitions see e.g.
Peyré and Cuturi (2019). Intuitively, the Wasserstein dis-
tance can be viewed as the minimum cost necessary to trans-
form one pile of earth into another. It is, therefore, also
known as the earth movers distance or optimal transporta-
tion distance. More formally, given two vectors x ∈ Rn and
x′ ∈ Rn′

with ∥x∥1 = ∥x′∥1 and a cost matrix Cd ∈ Rn×n′

containing pairwise distances between entries of x and x′,
the Wasserstein distance is defined by

Wd(x, x
′) = min

T∈T (x,x′)
⟨T,Cd⟩ (4)

1We note that kernels generally allow an individual weighting
of features. However for reasons of simplicity, we omit this aspect
in the further discussions.

with T (x, x′) ⊆ Rn×n′
and T1n′ = x, 1⊤n T = x′ for all

T ∈ T (x, x′), where ⟨·, ·⟩ is the Frobenius inner product.
The function d defining the costs in Cd between entries of x
and x′ is called ground distance. If the ground distance is a
metric, then the Wasserstein distance is a metric (Peyré and
Cuturi 2019, Sec. 2.4).

From Filtrations to Distances
We now outline the concept of tracking features over se-
quences of different graph resolutions and define distance
measures between graphs using this kind of information.

Feature Persistence
The general idea of feature persistence in graphs is derived
from persistent homology, which refers to a method in com-
putational topology that aims at measuring topological fea-
tures at various levels of resolution (Edelsbrunner and Harer
2010). Persistent homology is applied in a wide range of
topological data analysis tasks and has recently become a
popular tool for analyzing topological properties in graphs
(Aktas, Akbas, and Fatmaoui 2019). In this work, we adopt
some of its basic concepts and specifically fit them to de-
scribe the idea of feature persistence.

Intuitively speaking, feature persistence tracks the lifes-
pans of graph features in evolving graphs. That is, it records
the intervals during which occurrences of a specific feature
appear in sequentially constructed graphs. Such a graph se-
quence is defined by a graph filtration which is essentially
an ordered graph refinement that constructs a graph by grad-
ually adding sets of edges. More precisely, given a graph
G = (V,E), a graph filtration A(G) is a sequence of graphs

G1 ⊆ G2 ⊆ . . . ⊆ Gk = G , (5)
where ⊆ denotes the subgraph relation and Gi = (V,Ei ⊆
E) is called a filtration graph of G. Hence, filtration graphs
differ only in the sets of edges and describe a sequence in
which the last element is the graph G itself. Without loss of
generality, we assume G to be edge-weighted by a function
w : E(G) → R+ such that the filtration A(G) is implicated
by a sequence of decreasing values

α1 ≥ α2 ≥ . . . ≥ αk = 0 , (6)
where Gi is induced by the set of edges with weights greater
or equal αi, i.e., Gi = (V, {e ∈ E : w(e) ≥ αi}). Thus,
A is determined by the set of values Aα = {α1, . . . , αk}.
Furthermore, isomorphic graphs G,G′ (considering edge
weights) generate equivalent filtrations A(G) ≡ A(G′).

While traditional persistent homology tracks lifespans of
topological features such as connected components and cy-
cles, our notion of feature persistence is concerned with ar-
bitrary graph features. More precisely, given some feature
of interest f (e.g., Weisfeiler-Lehman vertex colors, c.f. Fig.
1) and a graph filtration A(G), feature persistence describes
the set of occurrence intervals of f over the sequence A(G).
This concept can very intuitively be depicted using (discrete)
persistence barcodes shown in Fig. 1. Each bar in the bar-
code diagram corresponds to the lifespan of a feature oc-
currence. Furthermore, considering a graph at different lev-
els of resolutions provides access to features not necessarily
present in the graph G itself.

8197



2 3 41

G1 G2 G3 G4

→ →

1 2 3 41

3

3

G :

2 →
v1 v2

v3 v4

v1 v2

v3 v4

v1 v2

v3 v4

v1 v2

v3 v4

v1 v2

v3 v4

v2

v3

v4

(a) (b) (c) (d)

Figure 1: Consider the simple Weisfeiler-Lehman label f corresponding to a vertex having exactly one neighbor. Each occur-
rence of this feature is individually marked in the filtration graphs A(G) shown in (b). The barcode in (c) depicts the existence
intervals of each such feature occurrence. This information is then aggregated into a filtration histogram ϕA

f (G) in (d).

Wasserstein Distance on Filtration Histograms
The majority of traditional graph kernels defines the simi-
larity measure in terms of the number of mutual substruc-
tures. This comes down to simply comparing frequencies of
features. Using the concept of feature persistence, we are
able to define much finer similarity measures on graphs. We
achieve this by defining a distance function on histograms
which aggregate lifespans of feature occurrences. This dis-
tance measure compares graphs in terms of when and for
how long a certain feature appears in the filtration. The un-
derlying intuition is that features occurring close to each
other in the filtration sequence indicate a higher similar-
ity than those lying farther apart. A natural choice for this
distance function is the Wasserstein distance as the aggre-
gated feature occurrence lifespans directly translate into 1-
dimensional distributions (see Fig. 1).

To define a distance measure w.r.t. a single feature f on
graphs G,G′, we aggregate the feature persistence informa-
tion of G and G′ into a histogram. This process is visualized
in Fig. 1. Such histograms essentially accumulate all feature
lifespans of a particular feature and hence reflect the number
of feature occurrences in each filtration graph.2

Definition 1 (Filtration Histogram). Given a graph G to-
gether with a length-k filtration A(G) and a feature f , the
function ϕA

f : G → Rk maps G to its filtration histogram
which counts occurrences of f in each filtration graph of G.

In the remainder of this work, we often omit the filtration
function A in the notations if it is either irrelevant or clear
from the context.

Using filtration histograms allows for the application of
natural distance measures such as the Wasserstein distance.
Intuitively speaking, the Wasserstein distance between such
histograms describes the cost of shifting (accumulated) fea-
ture lifespans into another.

Definition 2 (Filtration Histogram Distance). Given graphs
G,G′, a filtration histogram mapping ϕA

f : G → Rk to-
gether with a distance function d : Aα ×Aα → R on asso-
ciated values Aα = {α1, . . . , αk}, the filtration histogram

2Note that aggregating all feature occurrence intervals into a
single histogram clearly loses information on the distribution of
the individual lifespans. However, while a pairwise comparison of
persistence intervals has been shown to lead to valid kernels in the
context of persistent homology (Reininghaus et al. 2015), our ap-
proach relies on a single histogram representation, which we show
leads to very powerful kernel functions, nevertheless.

distance is given by

Wd(ϕ
A
f (G), ϕA

f (G
′)) . (7)

The ground distance d of the Wasserstein distance defines
how feature occurrences at different points in the filtrations
are being compared to each other. Since values in Aα can be
viewed as points on the timeline [α1, αk], a natural choice
for this distance is the simple euclidean metric

d1(αi, αj) = |αi − αj | (8)

on elements αi, αj ∈ Aα. Furthermore, while the Wasser-
stein distance has cubic time complexity in the length of fil-
trations in general, this reduces to a linear time complex-
ity when employing d1 on the real line as ground distance
(Peyré and Cuturi 2019, Rem. 2.30).

Graph Filtration Kernels
Recent results in optimal transport theory give rise to proper
kernel functions using the above filtration histogram dis-
tances when equipped with a suitable ground distance func-
tion (Le et al. 2019). In fact, it can be shown that utilizing the
Euclidean ground distance d1 yields positive semi-definite
kernels. These kernels serve as building blocks for our final
filtration graph kernels. More precisely, we construct graph
kernels by combining multiple base kernels kf over a set of
features f ∈ F . Each such base kernel is concerned with a
single feature and defines a similarity between graphs G and
G′ w.r.t. this particular feature. While the number of fea-
tures may potentially be infinite, we can show that it suffices
to consider only such features which appear in both graphs.

Since filtration histograms are not necessarily of equiva-
lent mass, a normalization is necessary to fit the requirement
of general Wasserstein distances. We denote such mass-
normalized filtration histograms using function ϕ̂f . The base
kernel on graphs G,G′ w.r.t. feature f (and parameter γ ∈
R+) is then defined over normalized histograms as follows

kAf (G,G′) = e−γWd1 (ϕ̂
A
f (G),ϕ̂A

f (G′)) . (9)

Filtration kernels can be constructed in form of linear
combinations of base kernels. That is, they are sums of
kernels kf over features f ∈ F . Note that the mass-
normalization of filtration histograms results in a loss of in-
formation on the number of occurrences of features. This
frequency information is often quite crucial. Thus, by intro-
ducing weights corresponding to the original masses of his-
tograms, this information loss can be in part reverted. That
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is, we weigh each base kernel kf (G,G′) using the origi-
nal histogram masses of ϕf (G) and ϕf (G

′), i.e., ∥ϕf (G)∥1
resp. ∥ϕf (G

′)∥1.
Definition 3 (Filtration Kernel). Given graphs G,G′, a fil-
tration function A, and a set of features F the filtration ker-
nel is given by

KF,A
Filt (G,G′) =

∑
f∈F

kAf (G,G′)
∥∥ϕA

f (G)
∥∥
1

∥∥ϕA
f (G

′)
∥∥
1

(10)
Notice the special case that a feature f does not appear in

the filtration sequence of G. Hence, the corresponding his-
togram has zero mass and the filtration histogram distance
to some non-zero mass histogram is not properly defined.
This issue can formally be solved by introducing a dummy
histogram entry. We note that since the kernel kf (G,G′)
is multiplied by the histogram mass ∥ϕf (G)∥1, which in
this particular case amounts to 0, this is only a formal issue
and becomes non-relevant in the kernel computation. From
a similar argument it follows that only the features f ∈ F
which appear in both graphs G and G′ positively contribute
to the similarity measure. The proofs for all following claims
can be found in the extended article version (Schulz, Welke,
and Wrobel 2021).
Theorem 1. The Filtration Kernel KF

Filt is positive semi-
definite.

The filtration kernel is closely related to the histogram
kernel (c.f. Eq. 3). In fact, the histogram kernel is a special
case of KF

Filt.
Proposition 1. For filtrations of length k = 1 (i.e., filtra-
tions consist of only the graph itself), the filtration kernel
KF

Filt reduces to the histogram kernel KF
H .

Filtration kernels can alternatively be defined as products
over base kernels. In fact, it can be shown that such kernels
generalize the radial basis function kernel.

A Kernel Instance Using Weisfeiler-Lehman
Subtree Features

We now discuss a concrete instance of the filtration ker-
nel family which uses the well-known Weisfeiler-Lehman
(WL) subtree features. We briefly recap the WL relabeling
method, formulate the Weisfeiler-Lehman subtree filtration
kernel and show that the kernel can in fact be computed in
linear time. We furthermore show that considering WL la-
bels over certain filtrations increases the expressiveness over
the ordinary Weisfeiler-Lehman procedure in terms of dis-
tinguishing non-isomorphic graphs.

The Weisfeiler-Lehman Method
The key idea of the Weisfeiler-Lehman procedure is to itera-
tively aggregate neighborhoods by compressing each node’s
labels and that of its neighbors into a new label. This com-
pression is done by first concatenating a node’s label and
its ordered (multi-)set of neighbor labels and subsequently
hashing this string to a new label using a perfect hash
function f#. Thus, with each iteration, a label incorpo-
rates increasingly large neighborhoods. More precisely, let

G = (V,E, ℓ0) be a graph with initial vertex label function
ℓ0 : V → Σ0, where Σ0 is the alphabet of original vertex
labels. Assuming that there is a total order on alphabet Σi

for all i ≥ 0, the Weisfeiler-Lehman procedure recursively
computes the new label of a node v in iteration i+ 1 by

ℓi+1(v) = f#(ℓi(v), [ℓi(u) : u ∈ N (v)]) ∈ Σi+1 (11)

where the list of the neighbors’ labels is sorted according to
the total order on Σi.

Shervashidze et al. (2011) employed the Weisfeiler-
Lehman method to define a family of graph kernels of which
the subtree kernel is perhaps the most popular member.
For two graphs G,G′, the Weisfeiler-Lehman subtree ker-
nel KWL essentially counts all pairs of mutual node labels.
This can be expressed as a histogram kernel on the combined
label sets FWL =

⋃
i∈[h] Σi, i.e.,

KWL(G,G′) =
∑

l∈FWL

c(l(G)) c(l(G′)) , (12)

where c(l(G)) is the number of appearences of label l in G
and h is the depth parameter.

The Weisfeiler-Lehman Isomorphism Test The
Weisfeiler-Lehman method was originally designed
to decide isomorphism between graphs. Two graphs
G,G′ are not isomorphic if the corresponding multisets
{{ℓi(v) : v ∈ V (G)}} and {{ℓi(v′) : v′ ∈ V (G′)}} differ for
some i ∈ N; otherwise they may or may not be isomorphic.
However, G and G′ are isomorphic with high probability if
the multisets are equal (Babai and Kucera 1979).

The Weisfeiler-Lehman Subtree Filtration Kernel
Recall that filtrations describe an order in which edges are
successively added until the final graph is obtained. During
this sequence, neighborhoods of vertices evolve and with
them their Weisfeiler-Lehman labels change. By also con-
sidering WL labels appearing only in filtration graphs, such
labels allow to consider partial neighborhoods which con-
tribute to a finer similarity measure. Fig. 1 depicts an exam-
ple of a filtration where appearances of a specific WL feature
are being tracked. Plugging the WL features FWL into Eq.
10 yields the Weisfeiler-Lehman filtration kernel KFWL

Filt .

Theorem 2. The Weisfeiler-Lehman filtration kernel
KFWL

Filt (G,G′) on graphs G,G′ can be computed in time
O(hkm), where h is the WL depth parameter, k is the fil-
tration length and m denotes the number of edges.

Thus, the kernel increases the complexity of the ordinary
Weisfeiler-Lehman subtree kernel merely by the factor k,
i.e., the length of the filtration.

On the Expressive Power of Weisfeiler-Lehman
Filtration Kernels
We now show that tracking WL features over filtrations
yields powerful methods in terms of expressiveness. The
expressive power of a method describes its ability to dis-
tinguish non-isomorphic graphs; i.e., method A is said to
be “more expressive” or “more powerful” than method B
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Figure 2: Consider the unlabeled 3-regular graphs G,G′

which cannot be distinguished using the WL isomorphism
test. By adding edge weights corresponding to the number
of triangles that each edge is part of yields filtration graphs
G1, G

′
1, which can now be distinguished by the WL isomor-

phism test. Note that the same filtration is generated using
the edge weight function w2

w (see experiments).

if A(G) = A(G′) ⇒ B(G) = B(G′) and there exist
non-isomorphic graphs G,G′ such that A(G) ̸= A(G′) and
B(G) = B(G′). Recall that the (1-dimensional) WL test
for isomorphism is known to be inexact even after n itera-
tions (Cai, Fürer, and Immerman 1992). However, consider-
ing WL labels over certain filtrations strictly increases the
expressive power.

Theorem 3. There exists a filtration function A such that
ϕA
f (G) = ϕA

f (G
′) for all f ∈ FWL if and only if G and G′

are isomorphic.

In fact, it holds that already for depth-1 WL labels (i.e.
h = 1), there are filtrations that correctly decide isomor-
phism for all graphs. As a first implication, the Weisfeiler-
Lehman subtree filtration kernel is – given a suitable filtra-
tion – strictly more expressive than the ordinary WL subtree
kernel on the original graphs.

Corollary 1. There exists a filtration function A such that
the kernel KFWL,A

Filt is complete.

A kernel is called complete if its feature map φ satisfies
φ(G) = φ(G′) ⇔ G,G′ are isomorphic (Gärtner, Flach,
and Wrobel 2003). While such a filtration is not known to
be efficiently computable, there are efficiently computable
filtrations that result in strictly more expressive (but incom-
plete) WL filtration kernels when compared to the ordinary
WL subtree kernel. As an example of such an efficiently
computable filtration, consider the function that annotates
edges by the number of triangles they belong to. This mea-
sure can be computed in polynomial time. Figure 2 shows
two 3-regular graphs that can be distinguished using this fil-
tration.3 This concept can be extended to larger (or multi-
ple) subgraphs, which allows for more expressive filtrations,
similar to the approach of Barceló et al. (2021).

Recently, there has been a large body of work that relates
the expressive power of certain graph neural networks to

3It is obvious that using the proposed weights as edge labels al-
lows the Weisfeiler-Lehman isomorphism test to distinguish these
two edge labeled graphs. However, it can be shown that it suffices
to consider the WL labels on the unlabeled filtration graphs.

that of the Weisfeiler-Lehman isomorphism test (Xu et al.
2019; Morris et al. 2019). While this is orthogonal to our
work, Theorem 3 implies that a (neural) ensemble of graph
neural networks over a suitably chosen filtration is strictly
more powerful than a graph neural network on the original
graph(s) alone:
Corollary 2. There exists a filtration function A and GNN
(Xu et al. 2019) N such that N can distinguish any two non-
isomorphic graphs when provided with the filtration graphs
corresponding to A.

Related Work
Graph Kernels Over the past twenty years there has been
a multitude of works constructing kernels for graph struc-
tured data, with many well known examples within the R-
convolution framework (Haussler 1999; Gärtner, Flach, and
Wrobel 2003; Borgwardt and Kriegel 2005; Shervashidze
et al. 2009, 2011; Horváth, Gärtner, and Wrobel 2004).
We refer to Borgwardt et al. (2020); Kriege, Johansson,
and Morris (2020) for recent surveys. The seminal work by
Shervashidze et al. (2011) introduce Weisfeiler-Lehman la-
bels as a means to define graph kernels. Kriege, Giscard,
and Wilson (2016) propose a discrete optimal assignment
graph kernel based on vertex kernels obtained from the hi-
erarchy of their WL labels. Togninalli et al. (2019) extend
this idea and allow fractional assignments using Wasserstein
distances. Rieck, Bock, and Borgwardt (2019) introduce a
method which individually weighs WL label occurences by
their persistent homology information. The difference to our
approach is that we consider arbitrary graph features. Fur-
thermore, in the particular case of Weisfeiler-Lehman fea-
tures, we allow additional WL features appearing only in
filtration graphs. Nikolentzos et al. (2018) compute k-core
decompositions and compare graphs using the associated hi-
erarchy of subgraphs. While conceptually similar to our ap-
proach, the method is limited to nested subgraph chains gen-
erated by k-cores. Moreover, the authors revert to applying
existing graph kernels to the graphs’ k-cores while we intro-
duce a family of novel graph kernels. In contemporaneous
work, which we became aware of after submission, O’Bray,
Rieck, and Borgwardt (2021) consider filtration curves as
graph representations and compare them via random forests.
Filtration curves describe the averaged curves of feature
counts over graph filtration sequences. In particular, the au-
thors considered node labels and connected components as
feature types for labeled, resp. unlabeled, graphs.

Expressiveness In pioneer work, Gärtner, Flach, and Wro-
bel (2003) have shown that complete graph kernels, i.e.,
kernels that map isomorphism classes to distinct points in
some Hilbert space, are at least as hard to compute as graph
isomorphism. While not complete, the Weisfeiler-Lehman
subtree kernel maps graphs that can be distinguished by
the WL isomorphism test to different feature vectors and
is hence equally expressive. Recently, Xu et al. (2019) and
Morris et al. (2019); Morris, Rattan, and Mutzel (2020);
Morris, Fey, and Kriege (2021) have investigated the con-
nection between the expressive power of graph neural net-
works and the WL isomorphism test. Briefly speaking, if the

8200



(k-dimensional) Weisfeiler-Lehman isomorphism test can-
not distinguish two graphs then (higher order) graph neural
networks cannot distinguish these graphs, either, and vice
versa. Recently, however, there has been significant work in
extending the expressive power of graph neural networks by
adding auxiliary information such as subgraph counts (Bar-
celó et al. 2021) or distance encodings (Li et al. 2020).

Experimental Evaluation
In this section, we evaluate the predictive performance of
our Weisfeiler-Lehman filtration kernel4 introduced above
and compare it to several state-of-the-art graph kernels. We
demonstrate that our method significantly outperforms its
competitors on several real-world benchmark datasets.

Experimental Setup & Datasets We compare our
method to a variety of state-of-the-art graph kernels and
include a simple baseline method to put the results into
perspective. The experiments are conducted on the well-
established molecular datasets DHFR, NCI1 and PTC-MR
(obtained from Morris et al. 2020) as well as the large net-
work benchmark datasets IMDB-BINARY (obtained from
Morris et al. 2020) and EGO-1 to EGO-4.4 This selection
contains only such datasets on which a simple histogram
baseline kernel was outperformed by more sophisticated
graph kernels. We measure the accuracies obtained by sup-
port vector machines (SVM) using a 10-fold stratified cross-
validation. A grid search over sets of kernel specific param-
eters is used for optimal training. We perform 10 such cross-
validations and report the mean and standard deviation.

Filtration Variants
A unique parameter of our kernels is the graph filtration. If
such a filtration is not provided through expert knowledge
or via available edge weights, one can be generated based
on the data at hand. Recall that a filtration is induced by the
value sequence α1 ≥ . . . ≥ αk (c.f. Eq. 6). While there
exist infinitely many such sequences, in the following ex-
periments, we govern only its length (i.e. k) and generate
the αis according to some fixed process. In this work, we
implement this process by first ordering and subsequently
partitioning the (multi)-set of edge weights that appear in a
dataset using a simple k-means clustering. We choose αi as
the minimum within the i-th cluster. Thus, the i-th filtration
graph Gi contains edges with edge weight at least αi.

As the above datasets are not explicitly equipped with
edge weights, we consider two exemplary edge weight func-
tions wd and wλ

w that each assign weights to edges according
to the edges’ structural relevance w.r.t. a specific property.
The first function wd assigns an edge e = {u, v} a weight
equal to the maximum degree of its incident vertices, i.e.,
wd(e) = max(deg(u), deg(v)). Thus, edges with incident
vertices of high degree appear early in the graph filtrations.
The second function wλ

w considers the number of walks be-
tween adjacent vertices. That is, for edge e = {u, v}, wλ

w(e)
is the number of walks of length at most λ from u to v.

4Available at https://github.com/mlai-bonn/wl-filtration-kernel

In the following, the Weisfeiler-Lehman filtration kernel
applied on graphs with edge weights calculated according to
wd and wλ

w is referred to as FWL-D, resp. FWL-W.

Real-World Benchmarks
Figure 3 compares the predictive performances of the fil-
tration kernel to various state-of-the-art graph kernels on a
range of real-world benchmark datasets. On datasets NHFR,
NCI1, PTC-MR and IMDB-BINARY, there are only small
discrepancies between our method and the best performing
competitor kernels. In fact, with PTC-MR being an excep-
tion, the results of all kernels using Weisfeiler-Lehmann sub-
tree features are virtually indistinguishable. This changes for
the EGO datasets. While on EGO-1, our FWL-D variant is
second only to the shortest-path kernel, it significantly out-
performs all tested kernels on EGO-2, EGO-3 and EGO-4,
amounting to a roughly 10% accuracy increase for the case
of the latter dataset. It becomes apparent from the results
of the FWL-W variant that our approach is particularly re-
liant on the provided edge weights. However, the evaluation
also suggests that in case the data at hand is not equipped
by meaningful edge weights, very simple edge weight func-
tions already suffice to significantly increase the predictive
performance over state-of-the-art graph kernels.

The Influence of the Filtration Length k
As central aspect of our approach, the filtration clearly plays
a critical role in practical applications. In order to investigate
the influence of filtrations, we provide experiments for vary-
ing choices of k, i.e., the filtration length. Figure 4 shows re-
sults on the EGO datasets for values k ∈ {1, . . . , 10} using
the FWL-D variant. Recall that the case k = 1 is equiva-
lent to the ordinary Weisfeiler-Lehman approach. Note that
already for k = 2 the predictive performance significantly
improves over k = 1 in all cases and that all datasets reach
their accuracy peak at only k = 2 or k = 3. Since the value
k linearly influences the kernel’s complexity, our approach
improves the predictive performance over the ordinary WL
subtree kernel at only a small additional computational cost.

Synthetic Benchmarks: Circular Skip Link Graphs
In this section, we investigate the discriminate power of
graph filtration kernels. In particular, we consider a bench-
mark setup as discussed in Murphy et al. (2019) which clas-
sifies circular skip link (CSL) graphs. A CSL graph Gn,s is a
4-regular graph where the n nodes form a cycle and all pairs
of nodes with path distance s on that cycle are furthermore
connected by an edge. Examples for CSL graphs are de-
picted in Fig. 5. Following Murphy et al. (2019), for n = 41
and s ∈ {2, 3, 4, 5, 6, 9, 11, 12, 13, 16}, graphs are pairwise
non-isomorphic. We construct a dataset containing 10 per-
muted copies of each graph. The classification task is then
to assign graphs to their skip link value s which measures a
model’s capability to distinguish non-isomorphic graphs.

In this experiment, we consider the FWL-W variant and
do not limit the number of filtrations k but allow as many
filtrations as there are distinct edge weights in the dataset
graphs. Thus, the number of filtration graphs is directly gov-
erned by λ, i.e., the parameter of wλ

w which denotes the
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Figure 3: Classification accuracies and standard deviations on real-world benchmark datasets. We compare our approach to a
simple baseline kernel (VE-Hist), the graphlet sampling (GS) kernel (Shervashidze et al. 2009), the shortest-path (SP) kernel
(Borgwardt and Kriegel 2005), the ordinary Weisfeiler-Lehman (WL) subtree kernel (Shervashidze et al. 2011), the Weisfeiler-
Lehman optimal assignment (WL-OA) kernel (Kriege, Giscard, and Wilson 2016), the Wasserstein Weisfeiler-Lehman (W-WL)
kernel (Togninalli et al. 2019), the persistent Weisfeiler-Lehman (P-WL) method (Rieck, Bock, and Borgwardt 2019), and the
core variant of the Weisfeiler-Lehman (Core-WL) kernel (Nikolentzos et al. 2018). We employ our WL filtration kernel (FWL-D
and FWL-W) using two different edge weight functions on graphs (see Sect. Filtration Variants).
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Figure 4: Classification accuracies and standard deviations
of the FWL-D variant for different filtration lengths k.

maximal walk length. For example, for λ = 4, there ex-
ist seven distinct edge weights. We, thus, generate k = 7
filtration graphs; one for each edge weight. Table 6 shows
the predictive performances for different choices of λ (and
thus k). The case λ = 1 implies k = 1 and therefore corre-
sponds to the ordinary Weisfeiler-Lehman kernel. Since the
Weisfeiler-Lehman method falls short of distinguishing reg-
ular graphs, the predictive performance corresponds to that
of a random classifier. However, for increasing values of λ,
the number of filtrations k grows as well which results in the
kernel’s ability to distinguish more and more CSL graphs.
Finally, for the case λ = 7, all non-isomorphic graphs can
be told apart. It is noteworthy, that these results are not en-
tirely surprising as the considered edge weights provide the
filtration kernel with increasing degrees of cyclic informa-
tion. Nonetheless, the experiments highlight the power of

G11,2 : G11,3 :

Figure 5: Circular skip link graphs.

λ : k 1 : 1 2 : 3 3 : 4 4 : 7 5 : 9 6 : 14 7 : 18 8 : 19
Acc. 10% 20% 30% 50% 70% 90% 100% 100%

Figure 6: Accuracies of FWL-W on CSL graphs.

filtration kernels and practically support Corollary 1.

Conclusion
We introduced filtration kernels, a family of graph kernels
which compare graphs at different levels of resolution by
tracking existence intervals of features over graph filtrations.
We showed that a particular member of this family enriches
the expressive power of the WL subtree kernel. The impli-
cations of this result extend beyond graph kernels, and allow
to construct more powerful graph neural networks, as the
expressivity of such networks is limited by the WL method.

Empirically, we have demonstrated that our proposed ker-
nel shows comparable or improved predictive performances
with respect to other state-of-the-art methods on real-world
benchmark datasets. Given the theoretical insights men-
tioned above, a particularly interesting research question is
concerned with practical performances of filtration-aware
graph neural networks.
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