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Abstract
After more than one decade, Weisfeiler-Lehman graph kernels are still among the most 
prevalent graph kernels due to their remarkable predictive performance and time complex-
ity. They are based on a fast iterative partitioning of vertices, originally designed for decid-
ing graph isomorphism with one-sided error. The Weisfeiler-Lehman graph kernels retain 
this idea and compare such labels with respect to equality. This binary valued comparison 
is, however, arguably too rigid for defining suitable graph kernels for certain graph classes. 
To overcome this limitation, we propose a generalization of Weisfeiler-Lehman graph ker-
nels which takes into account a more natural and finer grade of similarity between Weis-
feiler-Lehman labels than equality. We show that the proposed similarity can be calculated 
efficiently by means of the Wasserstein distance between certain vectors representing Weis-
feiler-Lehman labels. This and other facts give rise to the natural choice of partitioning 
the vertices with the Wasserstein k-means algorithm. We empirically demonstrate on the 
Weisfeiler-Lehman subtree kernel, which is one of the most prominent Weisfeiler-Lehman 
graph kernels, that our generalization significantly outperforms this and other state-of-the-
art graph kernels in terms of predictive performance on datasets which contain structurally 
more complex graphs beyond the typically considered molecular graphs.
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1 Introduction

Since Haussler’s pioneer work  (Haussler, 1999) on convolution kernels over discrete 
structures, graph kernels have become one of the most common tools for learning with 
graphs. One prominent family of graph kernels is the Weisfeiler-Lehman kernel frame-
work (Shervashidze et al., 2011), which relies on the Weisfeiler-Lehman label propagation 
algorithm  (Weisfeiler & Lehman, 1968), originally designed for deciding isomorphism 
between graphs. To this day, graph kernels based on the Weisfeiler-Lehman label propa-
gation algorithm rank among the very best state-of-the-art graph kernels on a majority of 
benchmark datasets, as has been experimentally shown in a recent survey (Kriege et al., 
2020). Motivated by their outstanding predictive performance, in this work we focus on 
graph kernels based on the Weisfeiler-Lehman label propagation algorithm.

The main idea behind the algorithm in Weisfeiler and Lehman (1968) is that it itera-
tively relabels vertices by propagating neighborhood information. Each such label implic-
itly corresponds to a rooted tree, called unfolding tree (see Fig. 1b). This iterative vertex 
relabeling procedure can in fact be combined with any classical graph kernel (e.g. Gärtner 
et al.,  2003; Borgwardt and Kriegel, 2005; Shervashidze et al., 2009, 2011). For simplic-
ity, we limit the discussion to the most established member of the family, the Weisfeiler-
Lehman subtree kernel  (Shervashidze et  al., 2011). However, we note that our approach 
can be applied to all graph kernels relying on the Weisfeiler-Lehman label propagation 
algorithm.

This and other Weisfeiler-Lehman graph kernels are conceptually limited to comparing 
Weisfeiler-Lehman vertex labels, or equivalently, unfolding trees, w.r.t. equality. While this 
comparison is extremely well-suited for deciding graph isomorphism, which was the origi-
nal problem considered by Weisfeiler and Lehman, it is arguably too restrictive for defin-
ing similarities, in particular, graph kernels. As an example, consider the unfolding trees 
depicted in Fig. 1b. While T1 visibly resembles T2 much more than T3 , Weisfeiler-Lehman 
graph kernels simply treat them all as unequal and are thus unable to quantify the apparent 
difference among the pairwise similarities between these three unfolding trees.

Motivated by these considerations, we generalize Weisfeiler-Lehman graph kernels 
by relaxing the above strict comparison of unfolding trees. In particular, instead of 

G2 :G1 :

G3 :

(a)

T2 :

≡

T1 :

≡

≡

T3 :

(b) (c)

Fig. 1  a depicts (initially unlabeled) graphs where vertices are labeled with the first two Weisfeiler-Lehman 
labels (colored). b shows the rooted unfolding trees corresponding to the blue, yellow and pink WL-labels, 
each representing a neighborhood. T1 (blue) differs from T2 (yellow) by only a single vertex while it differs 
from T3 (pink) by significantly more. The tree edit distance between T1 and T2 is therefore much smaller than 
that between T1 and T3 . c conceptually visualizes the latent space representing the pairwise tree edit dis-
tances between unfolding trees. Clusterings in this space identify groups of pairwise similar unfolding trees
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distinguishing between Weisfeiler-Lehman labels (or equivalently, unfolding trees) by 
the binary valued equality relation, we propose a natural similarity measure to com-
pare them on a much finer grade. This distance between Weisfeiler-Lehman labels is 
a modified tree edit distance between their respective unfolding trees, which provides 
a semantically adequate comparison for this kind of trees. We show that in contrast to 
more general tree edit distances, this distance can in fact be efficiently calculated.

The key concept of our generalization is to identify groups of similar Weisfeiler-
Lehman labels by clustering (visualized in Fig. 1c). The elements within a cluster are 
then treated as equal labels. That is, we generalize the ordinary Weisfeiler-Lehman 
graph kernels by regarding two unfolding trees equivalent if they belong to the same 
cluster, i.e., have a small distance to each other. In this way, the ordinary Weisfeiler-
Lehman graph kernel becomes the special case in which labels are considered equiv-
alent if and only if they have distance zero. For partitioning the Weisfeiler-Lehman 
labels, we use Wasserstein k-means clustering (Irpino et al. 2014). This choice is moti-
vated by our result that our adaptation of tree edit distance between unfolding trees can 
in fact be reformulated in terms of the Wasserstein distance.

We have empirically evaluated the predictive performance of our generalization of 
the Weisfeiler-Lehman subtree kernel on various real-world and synthetic datasets. 
The experimental results clearly show that while our more general approach does not 
result in an improvement on small molecular graphs, which are sparse and structurally 
simple, it considerably outperforms state-of-the-art graph kernels, and most impor-
tantly the ordinary Weisfeiler-Lehman subtree kernel, on datasets containing dense 
and structurally diverse graphs.

The main contributions of this paper can be summarized as follows:

• We generalize the Weisfeiler-Lehman graph kernels by considering a finer similar-
ity measure between Weisfeiler-Lehman labels than the binary valued comparison 
used in the original Weisfeiler-Lehman graph kernels.

• To do this, we introduce a specifically adapted tree edit distance for unfolding trees 
which provides a natural distance definition between the corresponding Weisfeiler-
Lehman labels and propose a polynomial-time algorithm for computing this type of 
tree edit distance.

• We show that the concept of Wasserstein k-means clustering  (Irpino et  al. 2014) 
can be used for partitioning Weisfeiler-Lehman unfolding trees (or equivalently 
Weisfeiler-Lehman labels) w.r.t. the above natural tree edit distance.

• We empirically evaluate our generalized kernel on various benchmark datasets and 
show that it significantly outperforms state-of-the-art graph kernels, including the 
ordinary Weisfeiler-Lehman subtree kernel on graph datasets beyond the typically 
considered molecular graphs.

The rest of the paper is organized as follows. We collect the necessary notions in 
Sect. 2, define our adapted notion of the tree edit distance and discuss its algorithmic 
aspects in Sect. 3. We present our generalization of Weisfeiler-Lehman graph kernels 
in Sect. 4 and cover related work in Sect. 5. Finally, we report the empirical results in 
Sect. 6 and conclude in Sect. 7.
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2  Preliminaries

Graphs. An (undirected) graph G = (V ,E,�) consists of a finite set V of vertices, a set 
E ⊆ {X ⊆ V ∶ |X| = 2} of edges, and a label function � ∶ V → � for some finite alpha-
bet � . When G is clear from the context, we use n ∶= |V| and m ∶= |E| . For v ∈ V  , N(v) 
is the set of neighbors of node v. Two graphs G,G′ are isomorphic, denoted G ≡ G′ , if 
there exists a bijective function between the vertices of G and those of G′ preserving all 
edges and labels in both directions. A (rooted) tree is a connected graph T = (V ,E) that 
has n − 1 edges and a root r(T) ∈ V  . For any v ∈ V ⧵ {r(T)} , par(v) is the parent of v, 
i.e., the unique neighbor of v on the path to r(T); accordingly, the children of v are all 
vertices that have v as parent. The subtree rooted at v, denoted T[v], is the subgraph of 
T with r(T[v]) = v induced by the set of descendants of v. F(v) then denotes the set of 
subtrees rooted at the children of v.

Tree edit distance. Let ⊥ ∉ 𝛴 be a special blank symbol. For 𝛴⊥ = 𝛴 ∪ {⊥} we define 
a cost function 𝛾 ∶ 𝛴⊥ × 𝛴⊥

→ ℝ and require � to be a metric. An edit script or edit 
sequence from a tree T into a tree T ′ is a sequence of edit operations turning T into T ′ . 
An edit operation can (i) relabel a single node v, (ii) delete v and connect all its children 
to the parent of v, or (iii) insert a single node w between v and a subset of v’s children. 
The cost of such edit operations is defined by � ; relabeling v from a to b costs �(a, b) and 
adding or deleting v costs 𝛾(�(v),⊥) . An edit script between T and T ′ of minimum cost is 
called optimal and its cost is called tree edit distance. It is a metric if � is a metric.

Wasserstein distance. The Wasserstein distance is a distance function between prob-
ability distributions on some given metric space. Intuitively, it can be viewed as the 
minimum cost necessary to transform one pile of earth into another. It is also known as 
the earth movers distance or optimal transportation distance. More precisely, given two 
vectors x ∈ ℝ

n and x� ∈ ℝ
n� with ‖x‖1 = ‖x�‖1 and a cost matrix Cn×n� containing pair-

wise distances between entries of x and x′ , the Wasserstein distance is defined by

with T (x, x�) ⊆ ℝ
n×n� and T�n� = x , �⊤

n
T = x� for all T ∈ T (x, x�) , where ⟨., .⟩ is the Frobe-

nius inner product. A T ∈ T (x, x�) is called transport matrix and a minimizer of the above 
is called optimal transport matrix. If the cost matrix is defined by a metric, then the Was-
serstein distance is a metric. For a set of vectors x1, ..., xk ∈ ℝ

n and a cost matrix Cn×n , we 
define the barycenter as

3  The Weisfeiler‑Lehman tree edit distance

In this section, we briefly recap the Weisfeiler-Lehman label propagation algorithm 
(Weisfeiler & Lehman, 1968) and define a distance on Weisfeiler-Lehman labels. We 
give an algorithm computing this distance and prove that it can be calculated in polyno-
mial time.

W C(x, x�) = min
T∈T (x,x�)

⟨T ,C⟩

argmin
c∈ℝn

∑

i∈[k]

W C(xi, c).
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3.1  The Weisfeiler‑Lehman method

The Weisfeiler-Lehman (WL) method (Weisfeiler & Lehman, 1968) was originally 
designed to decide isomorphism between graphs with one-sided error. Its key idea is to 
iteratively refine a partitioning of the vertex set by compressing the labels of each node and 
its neighbors into a new label. This is done by concatenating a node’s label and its ordered 
(multi-)set of neighbor labels and subsequently hashing it to a new label by a perfect hash 
function. Thus, with each iteration, labels incorporate increasingly large substructures. 
The injectivity of the hash function ensures that different sorted lists of labels cannot be 
mapped to the same (new) label.

More precisely, let G = (V ,E,�0) be a graph with initial vertex label function 
�0 ∶ V → �0 , where �0 is the alphabet of the original vertex labels. In case of unlabeled 
graphs, we assume all vertices to have the same mutual label. Assuming that there is a total 
order on alphabet �i for all i ≥ 0 , the Weisfeiler-Lehman algorithm recursively computes 
the new label of v in iteration i + 1 by

for all vertices v, where the list of labels in the second argument of f# is sorted by the 
total order on �i and f# ∶ �i × �∗

i
→ �i+1 is a perfect (i.e., injective) hash function. Two 

graphs G,G′ are not isomorphic if the corresponding multisets {{�i(v) ∶ v ∈ V(G)}} and 
{{�i(v

�) ∶ v� ∈ V(G�)}} are different for some i ∈ ℕ ; otherwise they may or may not be iso-
morphic. However, G ≡ G′ holds with high probability when the two multisets are equal 
(Babai & Kucera, 1979).

Shervashidze et  al. (2011) employed the Weisfeiler-Lehman method to define a fam-
ily of parameterized kernels measuring the similarity between graphs based on their 
relabeled versions. For a graph G = (V ,E,�0) they consider the sequence of WL-graphs 
G0,G1, ...,Gh with Gi = (V ,E,�i) , where h is the number of performed WL iterations. The 
Weisfeiler-Lehman kernel of depth h for two graphs G,G′ , given some base graph kernel k, 
is then defined as

In other words, the kernel k is applied to G,G′ for all labeling functions �i ( 0 ≤ i ≤ h ) 
and the h + 1 values obtained are subsequently summed up. We note that each component 
k(Gi,G

�
i
) in kh

WL
(G,G�) can be assigned a non-negative real weight �i . This allows e.g. to 

emphasize larger substructures (i.e., labels in higher iterations contribute more to the over-
all similarity). While the base kernel k can be an arbitrary positive semi-definite kernel 
on graphs, for simplicity we focus on the subtree kernel (Shervashidze et al., 2011) which 
employs the base kernel

where � is the Kronecker delta. Thus, kh
WL

 simply counts the pairs of matching labels of all 
WL-iterations. With complexity O(hm), where m is the number of edges, the WL subtree 
kernel is highly efficient and has proven to provide state-of-the-art results on a broad range 
of datasets (Kriege et al., 2020).

Another view of the Weisfeiler-Lehman label propagation is that for each iteration i, it 
implicitly constructs tree patterns of depth i which are being compressed into new labels. 

�i+1(v) = f#(�i(v), [�i(u) ∶ u ∈ N(v)]) ∈ �i+1

kh
WL

(G,G�) =
∑

i=0,...h

k(Gi,G
�
i
).

k(Gi,G
�
i
) =

∑

v∈V

∑

v�∈ V �

�(�i(v),�i(v
�)),
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Each such tree, denoted Ti(G, v) , is called the depth-i unfolding tree (or simply, i-unfolding 
tree) of G at v. It corresponds to all possible walks of length i starting at node v (Dell et al., 
2018). Figure 2 visualizes this concept and illustrates that there is a function from the verti-
ces in the unfolding tree of G at v into the corresponding vertices of graph G. Thus, a node 
of G can appear several times in Ti(G, v) for i > 1 . It is easy to see that there is a bijection 
between labels in �i and the set of (pairwise non-isomorphic) i-unfolding trees.

3.2  The structure and depth preserving tree edit distance

While the strict comparison of labels, or equivalently, that of unfolding trees is advanta-
geous for the original intention of the Weisfeiler-Lehman method, it is a severe drawback 
of all Weisfeiler-Lehman graph kernels, including the Weisfeiler-Lehman subtree kernel. 
The reason is that comparing unfolding trees with each other by equality (i.e., tree iso-
morphism), or equivalently, taking merely into account whether the labels of vertices and 
those of their neighborhoods differ or not, is arguably too restrictive for kernel design, as 
in case of kernels, we are interested in defining similarities. Our typical observation is that 
the i-unfolding trees (i.e., labels at iteration i) of most vertices will be unique for very small 
values of i. In other words, the limitation of the Weisfeiler-Lehman graph kernels is that 
two structurally completely different unfolding trees are treated identically to two unfold-
ing trees which differ by only very little.

To overcome this drawback, we propose a finer label comparison by defining a new 
similarity measure between unfolding trees that employs a specialized form of the well-
known tree edit distance. On an abstract level, the tree edit distance measures the minimum 
amount of edit operations necessary to turn one tree into another. Calculating this distance 
is NP-hard in general (see, e.g., Bille, 2005). However, for our purpose it suffices to con-
sider a restricted type of tree edit distance which preserves essential properties of unfolding 
trees. Below we show that, in contrast to the general case, this variant can be calculated 
efficiently.

The construction procedure of unfolding trees as demonstrated above shows that 
they reflect the neighborhoods of a specific vertex. Therefore, we require the edit scripts 
between unfolding trees to preserve the neighborhood relationships of vertex pairs as 
well as the depth of vertices. This leads to the following definition of constrained tree edit 
scripts:

Definition 1 A structure and depth preserving mapping (SDM) between two rooted trees 
T and T ′ is a triple (M,T , T �) with M ⊆ V(T) × V(T �) satisfying 

G :
1

2 3

4 5

6

2

1 4

3

1 5

4

1 2 6

5

1 3 6

1
v T 2(G, v) :

(a)

G′ : T 2(G′, v′) :
1

2 3

4 5

6

2

1 4

3

1 5

4

1 2 6

6

1 4 5

1
v′

(b)

Fig. 2  Unfolding trees T2(G, v) and T2(G�, v�) . As v and v′ have structurally similar roles in G, resp. G′ , their 
unfolding trees differ only slightly (labeled yellow). The vertex corresponding to v, resp. v′ , appears again 
several times at depth 2 of T2(G, v) , resp. T2(G�, v�)
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1. ∀(v1, v
�
1
), (v2, v

�
2
) ∈ M ∶ v1 = v2 ⟺ v�

1
= v�

2
 ,             (definite)

2. (r(T), r(T �)) ∈ M ,             (root preserving)
3. ∀(v, v�) ∈ M ∶ (par(v), par(v�)) ∈ M .             (structure preserving)

The set of all structure and depth preserving mappings between T and T ′ is denoted by 
SDM(T , T �).

SDM s represent sequences of edit operations subject to the above constraints that trans-
form trees into trees. More precisely, for an SDM (M,T , T �) let T = T0, T1,… , Tk be a 
sequence of trees such that Ti+1 is obtained from Ti by applying one of the following atomic 
transformations: 

relabel:   If (v, v�) ∈ M , then replace the label of v in Ti by that of v′.
delete:   If v is a leaf in Ti and it does not occur in a pair of M, then remove v from Ti.
insert:   If v′ is a vertex in T ′ which does not occur in a pair of M and for which the cor-

responding parent u already exists in Ti , then add a child to u with the label of v′.

The proof of the following claim is straightforward.

Proposition 1 Let (M,T , T �)  be an SDM  and T0 = T , T1,… , Tk  be a sequence of trees 
obtained by the above atomic transformations such that every v ∈ T   and v� ∈ T �  has been 
considered in exactly one transformation. Then Tk = T �.

Note that SDM s uphold some essential properties of unfolding trees. In particular, they 
ensure that siblings are preserved (i.e., for any SDM (M,T , T �) , v′

1
 and v′

2
 are siblings in T ′ 

whenever (v1, v�1), (v2, v
�
2
) ∈ M and v1, v2 are siblings in T) and that vertices can only be 

mapped onto vertices of the same depth. Recall, that our goal is to measure similarities 
between neighborhoods of vertices. It is thus essential that roots are being preserved; this is 
guaranteed by the second constraint in Def. 1. Furthermore, Def. 1 implies that M maps a 
connected subtree of T onto a connected subtree of T ′ . That is, the first (resp. second) com-
ponents of the pairs in M form a connected subtree of T (resp. T ′).

Figure 3 demonstrates the motivation of SDM s. The mapping displayed in Fig. 3a is a 
structure and depth preserving mapping from T into T ′ which visibly preserves the depth as 
well as the pairwise sibling relationships for all mapped vertices. In contrast, while the edit 
script in Fig. 3b is valid for more general definitions of edit operation sequences, the trans-
formation constructs a tree which heavily distorts neighborhood relationships and arbitrar-
ily inserts nodes such that the set of vertices in T ′ touched by a line preserve only very little 
of the topology of those in T. In particular, leafs that have distance 4 from each other in T 
are mapped onto vertices in T ′ which are now direct siblings. Furthermore, the mapping 
does not maintain root nodes, as a root is mapped to a non-root node.

Using these notions, we are ready to define the distance between unfolding trees.

Definition 2 Let T , T ′ be unfolding trees over a vertex label alphabet � and 
𝛾 ∶ 𝛴⊥ × 𝛴⊥

→ ℝ a cost function (i.e., metric), where ⊥ is the blank symbol. Then the cost 
for an SDM (M,T , T �) is

𝛾(M) =
∑

(v,v�)∈M

𝛾(�(v),�(v�)) +
∑

v∈N

𝛾(�(v),⊥) +
∑

v�∈N�

𝛾(⊥,�(v�))
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where N (resp. N′ ) are the vertices of T (resp. T ′ ) that do not occur in any pair of M. The 
structure and depth preserving tree edit distance from T into T ′ , denoted SDTED(T , T �) , is 
then defined by

Thus, the cost of an SDM (M,T , T �) is defined by the sum of the individual costs of 
relabeling, insertion, and deletion operations over all vertices of T and T ′ , where the cost 
of the insertion (resp. deletion) of a vertex v is given by 𝛾(�(v),⊥) (resp. 𝛾(⊥,�(v)) ). The 
structure and depth preserving tree edit distance between trees T and T ′ is then simply the 
minimal cost over all possible mappings.

Algorithm 1 Compute SdTed

input: Trees T, T ′, cost function γ : Σ⊥ ×Σ⊥ → R
output: Structure and depth preserving tree edit distance between T and T ′

SdTed(T, T ′):
1: F := F (r(T )), F ′ := F (r(T ′))
2: Pad F and F ′ with empty trees T⊥ such that |F | = |F ′| = deg(r(T )) + deg(r(T ′))
3: for all Ti ∈ F, T ′

j ∈ F ′ do

δij =






SdTed(Ti, T
′
j) if Ti ∈ F (r(T )) and T ′

j ∈ F (r(T ′))
∑

v∈V (Ti)
γ(�(v),⊥) if Ti ∈ F (r(T )) and T ′

j �∈ F (r(T ′))

∑

v′∈V (T ′
j

T ′
j

)
γ(�(v′),⊥) if Ti �∈ F (r(T )) and T ′

j ∈ F (r(T ′))

0 o/w .

4: Let S ⊆ F × F ′ be a minimum cost perfect bipartite matching w.r.t. distances δ
5: return γ(�(r(T )), �(r(T ′))) +

∑
(Ti, )∈S δij

SDTED(T ,T �) = min{�(M) ∶ (M,T , T �) ∈ SDM(T ,T �)}

↓

→

↑

1

2

1 3

1

2

2 31

1

1

2 31

1

2 3

131

(a)

1

1

2 31

1

2 3

131

↓

1

1

1→

↑

1 31 1 31

(b)

Fig. 3  Two mappings from one unfolding tree into another. a depicts a mapping which is structure and 
depth preserving whereas the one in b is not. Dashed lines correspond to pairs contained in the respective 
mappings M, red vertices are being deleted, blue vertices inserted and yellow vertices relabeled
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3.3  The unfolding tree edit distance algorithm

We now show that for any pair of unfolding trees T ,T ′ , SDTED(T , T �) can efficiently be 
calculated in a recursive manner (see Alg. 1). It follows from the properties of SDM s that 
subtrees of T are mapped onto subtrees of T ′ . Thus, finding an optimal SDM (i.e. an SDM 
of minimal cost) from T into T ′ is equivalent to finding the set of optimal SDM s turning 
the trees below the root of T (i.e. F(r(T))) into the trees below the root of T ′ (i.e., F(r(T �)) ). 
In order to find this set of optimal SDM s, we need the pairwise distances SDTED(Ti, T

�
j
) 

between all Ti ∈ F(r(T)) and T �
i
∈ F(r(T �)) as well as the costs of deleting, resp. inserting, 

trees Ti , resp. T ′
j
 . The computation of these costs is done in line 3 of Alg. 1. The first case 

recursively calculates the SDTED(Ti, T
�
j
) for all pairs of trees in F(r(T)) and F(r(T �)) . The 

second case considers the instance where the root of some tree Ti is not part of a mapping, 
which implies that all vertices in Ti are deleted. A similar argument follows for the inser-
tion of trees T ′

j
 (third case of line 3). The task of finding an optimal SDM can in fact be 

reduced to the minimum cost perfect bipartite matching problem as follows: Let the sets of 
trees below the roots of T and T ′ be F = {T1,… , Tk} and F� = {T �

1
,… , T �

k�
} , respectively. 

We first expand the set of trees F by k′ , resp. F′ by k, auxiliary empty graphs T⊥ (line 2) 
such that both sets have equal cardinality. The distance ( � in Alg. 1) between a tree and an 
empty graph is defined as the cost of deleting, resp. inserting that tree. Furthermore, two 
empty graphs clearly have distance 0. One can check that the optimal set of SDM s directly 
corresponds to a perfect bipartite matching of minimum cost between trees in the expanded 
sets F and F′ (line 4) with distances as defined above. Finally, the SDTED between trees 
T and T ′ is the cumulative cost of the distance between their roots and the minimal cost 
perfect bipartite matching between the trees below them (line 5). The above considerations 
imply the following result:

Theorem  1 Given unfolding trees T ,T ′  with labels from � and a cost function 
𝛾 ∶ 𝛴⊥ × 𝛴⊥

→ ℝ  over 𝛴⊥ , Alg. 1 returns SDTED(T , T �).

As an example, consider the SDTED between graphs T and T ′ of Fig. 4a. We assume 
that each insertion, deletion, and relabeling operation has cost 1. Following Definition 
1, the root of T is mapped onto the root of T ′ . As both vertices have the same label, the 
respective cost is zero (i.e. �(�(v1),�(v�1)) = 0 ). Due to the structure preserving property of 
SDM s, calculating the edit costs for the remaining vertices beneath the roots comes down 
to matching (resp. inserting and deleting) the highlighted subtrees. It can easily be checked 
that matching T[v2] with T[v�

2
] (which has cost 2) and thus deleting T[v3] (which has cost 2) 

has minimal cost over all possible matchings. The individual edit operations corresponding 
to this case are depicted in Fig. 3a.

By the construction of unfolding trees, vertices closer to v in G begin to appear at 
smaller depths in Ti(G, v) . In fact, the number of occurrences in Ti(G, v) of a node u ∈ V(G) 
grows exponentially with i once it has appeared for the first time. This indirectly assigns 
higher weights to vertices closer to v in the calculation of the structure and depth preserv-
ing tree edit distance.

Notice that Algorithm  1 describes a naive implementation which in general requires 
an exponential number of recursion calls. However, it is easy to see that the number of 
i-unfolding trees in T and T ′ is bounded by their sizes n = V(T) and n� = V(T �) . Once 
SDTED(Ti, Tj) between two i-unfolding trees Ti, Tj has been calculated, it can be stored in 
a lookup table. Thus, for each level i, we need to invoke Algorithm 1 a maximum of nn′ 
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times. With a lookup table for distances between unfolding tree pairs we thus require at 
most nn′h invocations of a minimum cost perfect bipartite matching algorithm, each of 
complexity Õ(d3) , where h is the depth and d the maximum degree of T ,T ′.

4  The generalized Weisfeiler‑Lehman subtree kernel

Using the definitions and results of Sect. 3, we now introduce our novel generalized Weis-
feiler-Lehman subtree kernel and show that it is in fact a generalization of the original 
Weisfeiler-Lehman subtree kernel (Shervashidze et al. 2011). Its key idea is to relax the 
rigid comparison of unfolding trees by equality (i.e., isomorphism) used in the original 
Weisfeiler-Lehman graph kernel by considering the structure and depth preserving dis-
tances between unfolding trees. Using SDTED , we identify groups of similar trees by 
means of hard clustering. This ensures that similar unfolding trees will belong to the same 
clusters, while dissimilar to different ones. Two unfolding trees are then regarded equiva-
lent by the relaxed Weisfeiler-Lehman subtree kernel iff they belong to the same cluster.

More precisely, for a set G of graphs, let �i be a set of hard clustering functions (i.e., 
partitionings) of the set of depth-i unfolding trees T (i) appearing in the graphs in G . We 
regard each element of �i as a function � ∶ T (i)

→ [k] , where k is the number of clusters 
defined by � . Then, for any graphs G,G� ∈ G and depth parameter h, the relaxed Weisfeiler-
Lehman subtree kernel is defined by

where � is the Kronecker delta. The proof to the following is straightforward and can be 
found in Appendix 1.

Theorem  2 The generalized Weisfeiler-Lehman subtree kernel kh
R-WL

(G,G�)  is positive 
semi-definite.

kh
R-WL

(G,G�) =
∑

i=0,..,h

∑

�∈�i

∑

v∈V

∑

v�∈ V �

�(�(Ti(G, v)), �(Ti(G�, v�))),

1

1

2 31

1

2 3

131

T : T ′ :

v2 v3 v′2

v1 v′1

(a)

⊥

⊥

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

Mr :

⊥

⊥

0 2 2 3
2 0 3 2
2 3 0 4
3 2 4 0

Mc :

1 2 3
1
2
3

(b)

Fig. 4  b Computing SDTED(T ,T �) for trees T and T ′ in a requires the costs for mapping the root nodes 
as well as for matching the highlighted subtrees onto another. The corresponding costs Mr , resp. Mc , 
are provided in b. Following the order on node labels, resp. child trees, as in Mr , resp. Mc , the unfold-
ing tree vectors of T and T ′ have the form �r(T) = [1, 0, 0, 0] , �c(T) = [1, 1, 0, 1] and �r(T

�) = [1, 0, 0, 0] , 
�c(T

�) = [0, 0, 1, 2] . One can check that WM
r (�

r
(T),�

r
(T �)) = 0 and WM

c (�
c
(T),�

c
(T �)) = 4 , resulting in 

SDTED(T ,T �) = WM
r (�

r
(T),�

r
(T �)) + WM

c (�
c
(T),�

c
(T �)) = 4
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Notice that kh
R-WL

 is equivalent to the original Weisfeiler-Lehman subtree kernel kh
WL

 for 
the case that �i = {�i} with �i defined as follows: For all T , T � ∈ T (i) , �i(T) = �i(T

�) iff T 
and T ′ are isomorphic (or equivalently, SDTED(T , T �) = 0 ). Thus, our definition general-
izes the ordinary Weisfeiler-Lehman subtree kernel in two ways: First, while the ordinary 
Weisfeiler-Lehman subtree kernel regards two unfolding trees T ,T ′ to be equivalent iff 
SDTED(T , T �) = 0 , our definition allows SDTED(T , T �) ≥ 0 as well. Second, our definition 
enables more than one partitioning (or hard clustering) function, in contrast to kh

WL
.

We employ the concept of Wasserstein k-means clustering (Irpino et  al. 2014) as a 
method to partition the set of unfolding trees. This choice is motivated by several argu-
ments. As mentioned above, the purpose of clustering is to group similar unfolding trees 
w.r.t. SDTED . We therefore require the clusters to be convex such that unfolding trees of a 
cluster ideally have pairwise small distance. Another requirement is to be able to control 
the number of clusters which also influences the complexity of the approximation vari-
ant of the generalized Weisfeiler-Lehman kernel discussed in Sect. 4.1. We show that the 
SDTED can in fact be calculated using the discrete Wasserstein distance. Thus, we use the 
same distance in the cost matrix as in the clustering process. Finally, the Wasserstein dis-
tance has recently been the focus of comprehensive research leading to fast approximation 
methods for distance and center computations (Cuturi & Doucet, 2014; Cuturi,  2013).

Below we address the most important ingredients of Wasserstein k-means needed for 
our purpose. In particular, we first discuss how unfolding trees can be represented by real-
valued vectors. Subsequently, we state that the Wasserstein distance between such vectors 
corresponds to the SDTED of the respective unfolding trees. This representation, further-
more, allows for the calculation of center points using Wasserstein barycenters. To keep 
the presentation concise we solely outline these concepts in this article. We provide a more 
detailed description and a complexity analysis in Appendices 2 and 3.

Unfolding Tree Vectors In order to effectively apply Wasserstein k-means, we represent 
i-unfolding trees by (sparse) real-valued vectors. Recall that the structure and depth pre-
serving tree edit distance is calculated as the sum of 

(A) the distance between the root nodes and
(B) the minimum cost of the perfect bipartite matching between child trees below these 

roots

as described in Alg. 1. We accordingly represent an i-unfolding tree T as a pair of vec-
tors � (T) = (�r(T),�c(T)) , where 

(A) �r(T) encodes the root node’s label �(r(T)) and
(B) �c(T) encodes the set of (i − 1)-unfolding child trees F(r(T)) below the root r(T).

We define �r(T) as a one-hot vector with entry 1 at index corresponding to its root node 
label �(r(T)) and 0 everywhere else. �c(T) corresponds to a histogram counting isomor-
phic child trees below the root. Analogously to Alg. 1, the vector �c(T) furthermore 
contains an entry for empty child trees ( ⊥ ) to account for insertion and deletion. We 
give an example of these vector representations in the description of Fig. 4.
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4.1  Wasserstein Distance on Unfolding Tree Vectors

Using the vector representations of unfolding trees, we are able to reformulate the com-
putation of the structure and depth preserving distance in terms of the Wasserstein dis-
tance. We show that the structure and depth preserving distance between trees T ,T ′ can 
in fact be calculated as the sum of (A) the Wasserstein distance between the root node 
vectors �r(T),�r(T

�) and (B) the Wasserstein distance between the child tree histogram 
vectors �c(T),�c(T

�) . More precisely, assume that the pairwise distances between child 
trees (as well as the empty tree) have already been calculated and are stored in a matrix 
Mc . Furthermore, let Mr be the distance matrix between the original node labels. It can 
easily be shown that for two depth-i unfolding trees T and T ′ , the distance between their 
root nodes is equal to WMr (�r(T),�r(T

�)) . Furthermore, the calculation of the minimum 
cost perfect bipartite matching between the sets of child trees below these roots (cf. Alg. 
1) can be reduced to computing the Wasserstein distance between �c(T) and �c(T

�) , i.e., 
WMc (�c(T),�c(T

�)) . This can be shown using the following lemma which follows from the 
integral flow theorem.

Lemma 1 For x, x� ∈ ℕ
d there exists a transportation matrix T ∈ T (x, x�)  with T ∈ ℕ

d×d  
such that ⟨T ,C⟩ = W C(x, x�)  for any cost matrix C ∈ ℝ

d×d.

This lemma implies that the minimum cost perfect bipartite matching between the sets 
of child trees in T and T ′ is equivalent to WMc (�c(T),�c(T

�)) . Putting all together we have:

An example demonstrating this equivalence is given in Fig. 4.

4.2  Unfolding Tree Barycenters

The above reformulation allows to calculate barycenters of sets of unfolding trees to per-
form Wasserstein k-means (Irpino et al., 2014). A barycenter of a set S of unfolding trees is 
a point which minimizes the sum of distances to unfolding tree vectors corresponding to S. 
Similarly to unfolding tree vectors, this barycenter is a pair of real-valued vectors (�r,�c) , 
where �r is the center of the �r s and �c of the �c s. Formally, the barycenter of S is a pair 
(�r,�c) defined by:

Note that the set of considered vectors �r , resp. �c , need to have equal mass, i.e. l1-norm, 
in order to compute barycenters. This is accomplished by adjusting the entry correspond-
ing to the empty tree ( ⊥ ) by an adequate number. While a barycenter, in general, does not 
correspond to an existing unfolding tree, the Wasserstein distance between an unfolding 
tree vector � (T) = (�r(T),�c(T)) and a center vector � = (�r,�c) can be computed none-
theless as follows:

SDTED(T ,T �) = WMr (�r(T),�r(T
�)) +WMc (�c(T),�c(T

�)).

(1)argmin
�r ,�c

∑

T∈S

WMr (�r(T),�r) +WMc (�c(T),�c)

(2)WMr (�r(T),�r) +WMc (�c(T),�c)
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4.3  The Wasserstein k‑Means Algorithm for Unfolding Trees

Using the above concepts, the Wasserstein k-means clustering algorithm can be stated in 
form of Lloyd’s algorithm (Lloyd, 1982). 

 i. In the initialization step, a subset of k unfolding trees is selected as initial centers.
 ii. Each unfolding tree is then assigned to its nearest center point (using Eq.  (2)).
 iii. Finally, the centers of the newly defined clusters are recalculated (using Eq.  (1)).

Steps (ii) and (iii) are repeated until clusters do not change anymore, i.e., the algorithm 
converges, or a predefined number of iterations has been reached.

4.4  A faster kernel variant

For many graph datasets the number of unfolding trees,1 grows rapidly with increasing 
iterations (although it is bounded by the total number of vertices in the database). Dealing 
with large amounts of unfolding trees in the Wasserstein k-means step becomes, however, 
computationally expensive. We thus propose a practical variant of our kernel that addresses 
this issue by approximating distances between unfolding trees using their cluster centers. 
Figure 5 shows the high level idea of this approach.

Consider the calculation of pairwise distances between unfolding trees as in Sect. 3.3. 
That is, the distances of 0-unfolding trees are defined by the metric � and the SDTED s for 
all pairs of (i + 1)-unfolding trees are computed using distances of i-unfolding trees. To 
reduce the number of distinct i-unfolding trees T (i) (or equivalently labels �i ), we perform 
a clustering C1, ...,Ck of T (i) with centers �1, ...,�k as in Sect. 4. We then effectively replace 
each i-unfolding tree with its cluster center �j and compute the distance between i-unfold-
ing trees T ∈ Cj, T

� ∈ Cj� by the distance between their cluster centers. More precisely, the 
structure and depth preserving tree edit distance between T and T ′ is approximated by

where T and T ′ have been assigned to clusters with centers �j = (�
j
r,�

j
c) , and �j� = (�

j�

r ,�
j�

c ) , 
respectively. Subsequently, these distances are used in iteration i + 1 , greatly reducing the 

WMr (�j
r
,�j�

r
) +WMc (�j

c
,�j�

c
)

Fig. 5  Visualization of a clus-
tering over a set of unfolding 
trees and the respective cluster 
centers. Instead of comput-
ing the SDTED for all pairs 
of unfolding trees, the kernel 
variant kh

R-WL*
 approximates 

their distances by the distance 
between their center points. E.g. 
SDTED(T1,T

�
1
) = WM

r (�
r
(T1),�r

(T �
1
)) +WM

c

(�
c
(T1),�c

(T �
1
)) is approximated 

by WM
r (�

r
,��

r
) +WM

c (�
c
,��

c
)

T ′
1

T ′
2

T ′
3

T1

T2

µ

µ′

1 More precisely, the number of pairwise non-isomorphic unfolding trees, i.e., Weisfeiler-Lehman labels.
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number of distance calculations. That is, in contrast to the computation of kh
R-WL

(G,G�) , 
our kernel variant kh

R-WL*
(G,G�) considers only k labels instead of |T (i)| labels in iteration i.

The concept of clustering unfolding trees (or equivalently WL labels) after each WL 
iteration and then continuing the process with representatives of clusters, can be consid-
ered as slowing down the WL relabeling process. When compared to the ordinary Weis-
feiler-lehman relabeling scheme, this generally means that vertices are split into different 
label classes at a later iteration.

5  Related work

While conventional graph kernels define similarity in terms of mutual substructures such 
as walks (Gärtner et  al., 2003), paths (Borgwardt & Kriegel, 2005), small subgraphs 
(Shervashidze et al.,  2009), or subtrees (Shervashidze et al., 2011), recent work has moved 
away from solely counting equivalent substructures.

For example, Kriege et al. (2016) introduce a kernel which computes an optimal assign-
ment between vertices. Similarly, Togninalli et al. (2019) relax this idea and employ the 
concept of optimal transportation as a form of “soft-matching” on vertices. Both methods 
perform a vertex matching based on node similarities derived from the Weisfeiler-Lehman 
hierarchy tree. More precisely, the similarity between two vertices v, v′ is measured in terms 
of the maximum depth i ∈ ℕ such that v and v′ have the same i-unfolding trees. Recall that 
if the i-unfolding trees of v and v′ differ, so must their j-unfolding trees for all j > i . Conse-
quently, the number of possible similarity values between v and v′ is bounded by the con-
sidered unfolding-tree depth. In extreme scenarios where neighborhoods are highly diverse 
such that no two vertices have identical 1-unfolding trees, all vertices are regarded equally 
(dis-)similar. A visualization for the limitation of the methods in Kriege et al. (2016) and 
Togninalli et al. (2019) is given in Fig. 6. While T1(G, v1) can be considered more similar 

v1

v3

v2

(a)

· · · · 21 · · · ·

· · · · 20 · · · ·

T 1(G, v1) :

T 1(G, v2) :

T 1(G, v3) :

(b)

Fig. 6  The neighborhoods of vertices in a are highly diverse. While the neighborhoods of v1 and v2 (as 
shown by their unfolding trees in b) are arguably more similar than those of e.g. v1 and v3 , methods relying 
on the rigid comparison of Weisfeiler-Lehman labels are unable to quantify the apparent similarity differ-
ences
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to T1(G, v2) than to T1(G, v3) , the methods are unable to quantify the apparent difference 
among the pairwise similarities. In contrast, the approach introduced in our article provides 
a similarity with a much finer granularity which is capable of making such a distinction.

The concept of comparing vertices by a finer similarity measure than the equivalence 
of their neighborhoods was also considered by Da San Martino et al. (2012). In that work, 
Da San Martino et  al. represent neighborhoods by rooted directed acyclic trees (DAG) 
and define a kernel over these DAGs which reflects their similarity. The difference to our 
approach is twofold. Firstly, compared to Weisfeiler-Lehman labels, the DAGs describe 
structurally different representations of neighborhoods. Secondly, while Da San Martino 
et al. (2012) compute similarities by applying tree kernels (e.g. Smola & Vishwanathan, 
2003) on sets of trees extracted from the DAGs, we employ the concept of a specific tree 
edit distance as similarity measure.

6  Empirical evaluation

We now evaluate the predictive performance of our approach on a set of established as well 
as novel real-world and synthetic datasets. Our results show that our approach increasingly 
outperforms all considered competitor kernels with growing density of dataset graphs in a 
majority of cases. Furthermore, experiments on synthetic graphs indicate that our approach 
is more robust to (structural) noise than competing kernels. We provide our implementa-
tion, as well as novel datasets on the accompanying web page.2

We note that in the following, we limit the evaluation to the approximation kernel 
R-WL* as discussed in Sect. 4.1. This choice was made due to the fact that while the R-WL 
kernel is well applicable to sparse graphs such as molecules, an explicit consideration of all 
unfolding trees may become computationally too expensive on more complex graphs.

6.1  Experimental setup

We compare our approach to a selection of graph kernels and provide a baseline method 
to put the performances into perspective. We consider the Weisfeiler Lehman subtree 
( WL ) kernel (Shervashidze et  al., 2011), the recently published Wasserstein Weisfeiler-
Lehman graph ( WWL ) kernel (Togninalli et  al., 2019), and the Persistent Weisfeiler-
Lehman ( PWL ) graph method (Rieck et  al., 2019) as examples of approaches that are 
based on comparing Weisfeiler-Lehman labels (i.e., unfolding trees) by equality and select 
depth parameter from h ∈ [5] . We furthermore consider the graphlet sampling ( GS ) ker-
nel (Shervashidze et  al., 2009) (with parameters � = 0.1 , � = 0.1 and k ∈ {3, 4, 5} ) and 
the shortest-path ( SP ) kernel (Borgwardt & Kriegel, 2005) as examples of other kernel 
classes. The ODD-STh kernel (Da San Martino et al., 2012) (with parameter h ∈ [4] ) com-
pares vertex neighborhoods as directed acyclic graphs and is in that sense most similar to 
our approach. We use the implementation of Siglidis et al. (2018) or that of the respective 
authors. As a baseline method ( VE-Hist ), we employ a simple histogram kernel over the 
set of edge and node labels. In case of our relaxed Weisfeiler-Lehman kernel R-WL* (as 
described in Sect. 4.1), we choose the number of clusters k =

√
��i� , use depth parameter 

h up to 4 and unit costs for all relabeling, deletion and insertion operations. We perform 

2 https:// github. com/ mlai- bonn/ GenWL.

https://github.com/mlai-bonn/GenWL
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a total of 3 clusterings. This particular choice for k selects the number of clusters rela-
tive to the amount of Weisfeiler-Lehman labels in each iteration and significantly reduces 
the computational complexity of the clustering. We perform a total of 3 clusterings (i.e. 
|�i| = 3 ) to make up for the randomness caused by the k-means initialization step.

We measure the prediction performance in terms of accuracy obtained by support vec-
tor machines (SVM) using a 10-fold cross-validation. If not explicitly chosen otherwise by 
the authors of the individual implementations, the parameter C is selected from the value 
set 2i ∶ i ∈ {−12,−8,−5,−3,−1, 1, 3, 5, 8, 12} . In each fold, a grid search is used to iden-
tify the optimal kernel parameters. We report the mean and standard deviation over 5 such 
cross-validation repetitions.

6.1.1  Datasets

Real-world Datasets We conduct experiments on several social network datasets. The 
benchmark datasets IMDB-BINARY and REDDIT-BINARY (IMDB, resp. REDDIT for 
short, provided by Morris et  al. (2020)) contain subgraphs of online networks. IMDB 
consists of collaboration networks between actors, each annotated against movie genres. 
Graphs in REDDIT represent user interactions in discussion forums with graphs being 
annotated by the type of forum.

Furthermore, we provide a set of novel real-world benchmark datasets extracted from 
the social networks Buzznet, Digg, Flickr (provided by Zafarani & Liu, 2009) and Live-
Journal (provided by Leskovec & Krevl, 2014). Each of the EGONETS datasets consists 
of 50 random ego network graphs from each of the 4 social networks where graphs are 
annotated against the social network they were extracted from. Here, ego networks are sub-
graphs induced by a vertex’s neighbors. Graphs within each dataset were randomly chosen 
from the set of all ego networks but underlie size- and density-specific constraints to ensure 
that a simple count of nodes and edges is not sufficient for prediction tasks. The EGON-
ETS-x datasets contain increasingly larger and more dense ego networks with growing 
index x. The learning task is to assign each ego network to the network they were extracted 
from. Details about the structural properties on these datasets can be found in Table 1.

Table 1  Structural information of graph benchmark datasets

|D|, |C|, and � , denote the number of graphs, number of classes, and maximum degree in a dataset. �0 is the 
number of distinct vertex labels. �1,�2,�3 are the amounts of distinct Weisfeiler-Lehman labels for depth 
h = 1, 2, 3 , respectively

Dataset |D| |C| ∅|V| ∅|E| ∅|E|
∅|V|

� Number of node labels

�0 �1 �2 �3

IMDB 1000 2 19.8 96.5 4.9 135 1 65 2931 3595
REDDIT 2000 2 429.6 497.8 1.2 3062 1 565 72k 244k
EGONETS-1 200 4 139.0 594.6 4.3 140 1 112 21k 25k
EGONETS-2 200 4 178.6 1445.0 8.1 180 1 140 33k 35k
EGONETS-3 200 4 220.0 2613.5 11.9 203 1 169 42k 43k
EGONETS-4 200 4 259.8 4135.9 15.9 237 1 209 51k 51k
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Synthetic Datasets To systematically evaluate the predictive performance of our kernel 
with varying structural complexity, we consider graphs generated by the stochastic block 
model (Wang & Wong, 1987). The specific generation of graphs is described by the fol-
lowing process: Let T be some random tree of a predefined size. Create two (non-isomor-
phic) graphs G1,G2 by adding a new edge to T.3 We then generate a set of graphs for each 
G ∈ G1,G2 by repeating the following process: Let Ĝ be the empty graph. 

(i) For each v ∈ G , add a set of c vertices v1, ..., vc to Ĝ.
(ii) For each v ∈ G , connect pairs {vi, vj} ∈ V(Ĝ) by an edge with probability p.
(iii) For all pairs {vi, uj} ∈ V(Ĝ) with {v, u} ∈ E(G) , connect them by an edge with prob-

ability p, as well.
iv) Connect a number of mx prior unconnected vertex pairs {vi, uj} in Ĝ as noise edges.

The resulting classification task is to assign the generated graph Ĝ to the underlying graph 
structure G ∈ G1,G2 . Figure 7 depicts an example of two such generated graphs. All data-
sets considered in the following evaluations were created starting with a random tree of 
size 16 which was extended by a single random edge resulting in graphs G1,G2 . For each 
classification task we generated 200 random graphs for each G ∈ G1,G2 . The number of 
vertices c contained in a block was set to 8 in all experiments. The remaining parameters 
were selected as stated in Fig. 9. For each set of parameter choices, we generated 5 datasets 
and provide the mean accuracy.

6.2  Real‑world benchmarks

Figure  8 lists the classification accuracies for datasets containing graphs extracted from 
online networks. While there are no large discrepancies between our method and the best 
performing comparison kernels on datasets IMDB, REDDIT and EGONETS-1 (which all 
have an average node-to-edge ratio up to roughly 1  : 4), the R-WL* kernel considerably 

(a) (b)

Fig. 7  Graphs generated by slightly different underlying structures (depicted in grey). Each block in the 
underlying structure contains 3 vertices. Two vertices are connected by an edge with some probability p if 
they belong to the same block or their blocks are connected in the underlying structure (depicted by solid 
black lines). Furthermore, both graphs additionally contain mx = 4 noise edges (depicted by dashed red 
lines)

3 To ensure that the classification task is non-trivial, we require that G1 and G2 have the same multiset of 
vertex degrees.
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outperforms all others on the three remaining EGONETS datasets which contain signifi-
cantly higher density graphs. The performance gap between the R-WL* kernel and the best 
performing competitor becomes increasingly larger with a growing density in the dataset 
graphs, leading to an above 20% accuracy difference. To formally evaluate statistical sig-
nificance, we perform two-sample t-tests (with a significance threshold of 0.05) corrected 
by the Bonferroni method to make up for the number of tests within each dataset. The 
results show that our R-WL*  variant significantly outperforms its competitors on the data-
sets REDDIT, EGONETS-2, EGONETS-3 and EGONETS-4. Table 2 shows the running 
times to obtain the accuracy values.

It is noteworthy that in case of the EGONETS datasets, already for depth h = 2 nearly 
all unfolding trees (i.e. depth-2 unfolding trees) appear only once in the respective dataset. 
Thus, the original WL kernel, WWL , and PWL kernels are not able to profit from any 
structural information exceeding node degrees, as graphs share almost no i-unfolding trees 

IMDB REDDIT EGONETS-1 EGONETS-2 EGONETS-3 EGONETS-4
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Fig. 8  Classification accuracies and std. deviations for large network benchmark datasets in % . ODD-STh, 
PWL and WWL did not finish within 24 hours on REDDIT

Table 2  Runtimes in seconds

We measured the total time it took to perform a 10-fold cross-validation (as described in Sect. 6.1). “−” 
indicates that the computation took longer than 24 hours or halted with an error

Dataset WL GS SP ODD-STh WWL PWL R-WL*

IMDB-B. 26 2438 30 252 4081 174 44
REDDIT-B. 397 4803 46778 − − − 1462
EGONETS-1 21 251 191 888 258 115 393
EGONETS-2 26 267 393 2154 349 186 1275
EGONETS-3 34 287 747 4275 492 275 2739
EGONETS-4 44 301 1152 7638 650 400 4173
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for i ≥ 2 . Interestingly, these kernels still achieve similar results to SP and GS on EGON-
ETS-2/3/4, while VE-Hist is no better than random chance. In contrast, our approach 
clearly improves upon this limitation.

We furthermore evaluate our approach on traditional molecular datasets. The results 
suggest that our relaxation of the Weisfeiler-Lehman kernel matches but does not further 
improve the predictive performance over other classifiers on such datasets which contain 
mainly sparse and noise-free graphs. These evaluations can be found in Appendix 4.

Given these two high level experimental results, we conjecture that identifying similar 
unfolding trees instead of identical unfolding trees becomes the more advantageous, the 
more complex and diverse the graph database becomes. In other words, relaxing a strict 
comparison by equality of Weisfeiler-Lehman labels by clustering together similar WL 
labels seems to be beneficial when the growth rate of the label sets is high.

6.3  Noise and structural deviation

To validate our claim above, we investigate the effect of noise and structural deviation on 
the predictive performance of each kernel. To this end, we vary the values of the param-
eters mx and p of the synthetic datasets (see  Sect.  6.1.1). The parameter p governs the 
probabilities of edges within and between vertex blocks while mx indicates the number of 
randomly added noise edges. Hence, they directly influence the noise and structural devia-
tion of graphs within a class. Due to the construction of the datasets, VE-Hist cannot beat 
the accuracy of a random classifier (i.e., 50% ) for any choice of parameters and is thus 
excluded from this analysis.

Figure 9a investigates the methods’ robustness to noise. Higher values of mx increase 
the deviation of graphs within the same class. For mx = 0 (with p = 1.0 fixed) all graphs 
in the database have 128 nodes and 2048 edges, and graphs of the same underlying struc-
ture are pairwise isomorphic. Thus, all kernels except GS achieve 100% . While our method 
achieves 100% accuracy for all choices of mx , the remaining kernels gradually and signifi-
cantly decrease in predictive performance with increasing values for mx . It is noteworthy 
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Fig. 9  Classification accuracies for synthetic dataset evaluations. a analyzes the influence of different 
amounts of noise edges mx (with p = 1.0 fixed) and b shows results obtained for different values of edge 
probabilities parameter p (with mx = 0 fixed). Block size c has been set to 8 for all cases. A statistical signif-
icance evaluation using paired t-tests (with significance threshold 0.05) corrected by the Bonferroni method 
shows that our method significantly outperforms all others on the experiments performed in a while it is 
beaten only by two competitors in b 
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that for the case of 100 noise edges, no competitor kernel but PWL performed significantly 
better than random.

Figure 9b analyzes the methods’ ability to identify the underlying structure using dif-
ferent values of the edge probability parameter p (where parameter mx = 0 is fixed). The 
lower the value p, the more the dataset graphs within a class deviate from each other, and 
the less of the underlying structure is being reflected. While in the trivial case p = 1.0 
(where graphs belonging to the same class are pairwise isomorphic) all methods except 
GS achieve 100% accuracy, we observe a rapid performance decline for all methods but 
R-WL*, SP and ODD-STh for values p < 1.0 . In particular, WL and WWL do not per-
form better than random other than for the trivial case. PWL , which is based on Weisfeiler-
Lehman labels as well, only performs slightly better. While ODD-STh underperformed 
in all previous experiments, it seems that its approach to neighborhood similarity is well 
suited for this kind of structural deviation.

In summary, it is apparent that kernels based on the rigid equality of Weisfeiler-Lehman 
labels are less suited when structural noise distorts the graphs or when the graphs in a class 
structurally deviate significantly. Our method mitigates this drawback: Its ability to identify 
similar vertex neighborhoods leads to major increases in predictive performance on data-
sets containing noisy and structurally diverse graphs.

7  Concluding remarks

We experimentally demonstrated a drawback of the original Weisfeiler-Lehman graph ker-
nels (Shervashidze et al., 2011) which is caused by their rigid comparison of Weisfeiler-
Lehman labels w.r.t. equality. To overcome this limitation, we introduced a generalization 
of Weisfeiler-Lehman graph kernels which allows for a finer similarity measure between 
Weisfeiler-Lehman labels. The experimental results reported in this paper clearly show 
that the proposed generalization outperforms other state-of-the-art methods on graphs with 
structural complexity and edge density beyond the typically considered molecular graphs 
of small pharmacological compounds. We stress that although for simplicity we presented 
our approach only for the Weisfeiler-Lehman subtree kernel, our generalization is naturally 
applicable to all Weisfeiler-Lehman graph kernels.

In recent years, graph neural networks (GNNs) relying on the principle of message pass-
ing have become increasingly prevalent. Much like the Weisfeiler-Lehman label propaga-
tion scheme (Weisfeiler & Lehman, 1968), GNNs compute node feature representations 
by aggregating neighborhood information which are subsequently used for learning tasks, 
such as node or graph classification. GNNs generally aim at learning node feature represen-
tations which reflect pairwise node similarities in a high-dimensional metric space. While 
our approach does not explicitly learn node representations, it shares with GNNs the ingre-
dient of fine grained (dis-)similarity measures comparing nodes and their neighborhoods.

The Weisfeiler-Lehman method was originally designed to decide graph isomorphism 
by comparing the WL-label feature sets of graphs. In this context, clustering similar WL-
labels can be perceived as effectively lowering the dimensionality of the feature domain. 
That is, in our approach we deliberately decrease the representational power of the respec-
tive embeddings and thus relax the isomorphism test to obtain a more general similarity 
measure. In fact, the notion of isomorphism relaxation can also be found in graph neural 
networks for which recent studies provide some theoretical results concerning their expres-
siveness which relates to the learnable graph similarity measures. In particular, Xu et al. 
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(2019) and Morris et  al. (2019) investigate the relationship of GNNs to the Weisfeiler-
Lehman method, showing that their GNNs can be at most as discriminative as the Weis-
feiler-Lehman method in terms of distinguishing non-isomorphic graphs. Xu et al. (2019) 
introduce the so-called Graph Isomorphism Networks (GIN) for which they prove that for 
certain properties such GINs map any two graphs to the same embedding if and only if the 
Weisfeiler-Lehman test considers the graphs to be isomorphic. Errica et al. (2020) further 
increases the expressivity of GINs by incorporating edge attributes as well as node or edge 
representations across network layers leading to strictly more expressive GNNs. Chen et al. 
(2019) establish a formal framework which classifies the representational power of GNNs, 
where its most powerful members correspond to collections of permutation-invariant func-
tions which are able to distinguish non-isomorphic graphs. Furthermore, the concept of 
relaxing isomorphism to more general similarities can also be be found in Al-Rfou et al. 
(2019). In that paper, the authors introduce a neural network encoder architecture which 
is used to compute a divergence score between graphs. Conceptually, the more similar two 
graphs are, the smaller their divergence becomes. Another possible connection of our ker-
nel to GNNs is the vision of hybrid-approaches which point towards promising methods 
that combine aspects of both, kernels and GNNs.

Our results raise several other interesting questions for further research. One open ques-
tion is whether the tree edit distance can directly be used as a ground distance in vertex 
matching kernels - similar to approaches such as in Kriege et al. (2016) or Togninalli et al. 
(2019) - and, thus, eliminating the need for a hard partitioning of unfolding trees. Unfor-
tunately, straightforward approaches such as replacing the ground distance in the Wasser-
stein Weisfeiler-Lehman kernel (Togninalli et al., 2019) by the tree edit distance does not 
yield a positive semi-definite kernel in general. However, there has been comprehensive 
research addressing the problem of dealing with indefinite kernels. For instance, indefinite 
kernel matrices may be converted to positive definite ones using spectrum transformation 
approaches, which, e.g., aim at flipping all negative eigenvalues to zero (Wu et al., 2005) 
or alter the matrix’s diagonal by adding a positive term (Roth et al., 2003). Furthermore, 
we note that our node distance function SDTED is not restricted to be applied in the context 
of graph kernels. In fact, using SDTED as Wasserstein ground distance in order to compute 
distances between graphs, directly allows the application of other (dis-)similarity-based 
classifiers such as k-nearest-neighbor approaches.

Another particularly important research direction is to study other meaningful similari-
ties between labels that allow for a faster calculation of minimum cost perfect bipartite 
matchings (or Wasserstein distances). As the cost function � on the original vertex labels 
can be defined by an arbitrary metric, the application of our approach to attributed graphs 
is another natural research question.

Appendix 1 Positive semi‑definiteness

Claim 1 The relaxed Weisfeiler-Lehman kernel kh
R-WL

(G,G�) defined as

is positive semi-definite.

Proof We first show that the term

∑

i=0,..,h

∑

�∈�i

∑

v∈V

∑

v�∈ V �

�(�(Ti(G, v)), �(Ti(G�, v�)))
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can be expressed as an inner product. Let � ∶ T (i)
→ [k] be some partitioning on the 

i-unfolding trees T (i) which includes all i-unfolding trees appearing in G and G′ . For some 
i-unfolding tree T, ��(T) denotes the vector with elements indexed by the k partitions of � . 
At index corresponding to the partition that T belongs to (i.e. index �(T) ) set entry to 1, 
and to 0 everywhere else. Let � (G) be the sum over such vectors of i-unfolding trees of 
all vertices in graph G, i.e., � (G) =

∑
v∈V(G) ��(Ti(G,v)) . Then, one can check the following 

equivalence:

As the sum of kernels is also a kernel, it follows that the Relaxed Weisfeiler-Lehman kernel 
kh
R-WL

(G,G�) is positive semi-definite.   ◻

Appendix 2  Clustering of unfolding trees (details)

In this section we provide a detailed and more formal description of the Wasserstein k-means 
algorithm applied to unfolding trees.

Unfolding tree vectors

We first show how to represent unfolding trees by real-valued vectors. Recall that the struc-
ture and depth preserving tree edit distance is calculated as the sum of 

(A) the distance between the roots and
(B) the minimum cost of the perfect bipartite matching between child trees below these 

roots.

We therefore represent a depth-h unfolding tree T as a pair � (T) = (�r(T),�c(T)) , where 
the vectors �r(T) and �c(T) represent the root node’s label �(r(T)) and the set of (h − 1)

-unfolding child trees F(r(T)), respectively.
More precisely, let 𝛴⊥ = (l1,… , lp,⊥) be the ordered set of all original vertex labels 

appearing in the graph dataset G and blank symbol ⊥ . Then the root node label of an 
unfolding tree T is represented by the vector �r(T) = (x1,… , xp, x⊥) , where

Furthermore, let T (h−1) = (T
(h−1)

1
,… , T (h−1)

q
) be the ordered set of all pairwise non-isomor-

phic (h − 1)-unfolding trees in G . Then, the child trees F(r(T)) below the root of T are rep-
resented by the vector �c(T) = (x1, ..., xq, xq+1) with

∑

v∈V

∑

v�∈ V �

�(�(Ti(G, v)), �(Ti(G�, v�)))

⟨� (G),� (G�)⟩ =
�

v∈V

�

v�∈ V �

�(�(Ti(G, v)), �(Ti(G�, v�)))

xi =

{
1 if i ∈ [p] and �(r(T)) = li
0 o/w .

xi =

{
|{T � ∈ F(r(T)) ∶ T � ≡ T

(h−1)

i
}| if i ∈ [q]

2d − deg(r(T)) o/w
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where d is the maximum vertex degree in G.

The Wasserstein distance over unfolding tree vectors

We now show that the terms (A) and (B) above correspond to Wasserstein distances 
between root and between child vectors, respectively. In order to properly formulate the 
Wasserstein distances, we require cost matrices containing pairwise distances between 
labels of root nodes (i.e., elements of 𝛴⊥ ) and pairwise distances between child trees (i.e., 
(h − 1)-unfolding trees).

More precisely, for the alphabet � with |�| = p , let Mr ∈ ℝ
(p+1)×(p+1) be the distance 

matrix between labels and blank symbol ⊥ = lp+1 according to 𝛾 ∶ 𝛴⊥ × 𝛴⊥
→ ℝ , i.e.:

The pairwise distance matrix over the set T (h−1) of (h − 1)-unfolding trees together with the 
empty graph T⊥ = T

(h−1)

q+1
 is given by

where q = |T (h−1)|.
Then, for two depth-h unfolding trees T and T ′ , the Wasserstein distance between their 

roots is equal to WMr (�r(T),�r(T
�)) . Furthermore, the calculation of the minimum cost 

perfect bipartite matching between the sets of child trees below these roots can be reduced 
to computing the Wasserstein distance between vectors �c(T) and �c(T

�) using the follow-
ing lemma which follows from the integral flow theorem.

Lemma 1 For x, x� ∈ ℕ
d there exists a transportation matrix T ∈ T (x, x�) with T ∈ ℕ

d×d  
such that ⟨T ,C⟩ = W C(x, x�)  for any cost matrix C ∈ ℝ

d×d.

This lemma implies that (B) above is equivalent to WMc (�c(T),�c(T
�)) . Putting all 

together we have:

Unfolding tree barycenters

We now show how to represent and calculate the barycenters of sets of unfolding trees 
for Wasserstein k-means. A barycenter of a set of unfolding tree vectors is a point which 
minimizes the sum of distances to all vectors in the set. Similarly to unfolding tree vectors 
defined in Sect.  4, the barycenter is a pair (ℝp+1,ℝq+1) . While a barycenter, in general, 
does not correspond to an existing unfolding tree, the Wasserstein distance between unfold-
ing tree and center vectors can be computed nonetheless.

Formally, for a set of depth-h unfolding trees S ⊆ T (h) , consider the set

Mr = (mij)i,j∈[p+1] with mij = �(li, lj).

Mc = (mij)i,j∈[q+1] with mij = SDTED(T
(h−1)

i
, T

(h−1)

j
),

SDTED(T , T �)

= WMr (�r(T),�r(T
�)) +WMc (�c(T),�c(T

�)).

𝕍
(h) = {(Vr,Vc) ∈ ℝ

p+1 ×ℝ
q+1 ∶ ||Vr||1 = 1 and ||Vc||1 = 2d}.
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Note that � (T) ∈ �
(h) for all T ∈ T (h) . For any two X, Y ∈ �

(h) , we define their Wasserstein 
distance by

Using these notions, for the barycenter � ∈ �
(h) minimizing the sum of Wasserstein dis-

tances to depth-h unfolding trees in S we have

Thus, the barycenter � is the pair (�r,�c).

The Wasserstein k‑means algorithm for unfolding trees

Using the above definitions, we are ready to formulate the Wasserstein k-means clus-
tering algorithm for unfolding trees in the form of Lloyd’s algorithm (Lloyd, 1982): 

1. Initialization: Choose a k-subset {𝜇1, ...,𝜇k} ⊆ {� (T) ∶ T ∈ T (h)}

2. Assignment: Ci = {T ∈ T (h) ∶ W
Mr

Mc
(� (T),�i) ≤ W

Mr

Mc
(� (T),�j),∀j ∈ [k]}

3. Update: �i = argmin
�∈� (h)

∑
T∈Ci

W
Mr

Mc
(� (T),�)

Steps 2 and 3 are repeated until clusters do not change anymore, i.e., the algorithm 
converges, or a predefined number of iterations has been reached.

Figure  10 visualizes the concept of clustering unfolding trees using Wasserstein 
k-means.

W
Mr

Mc
(X, Y) = WMr (Xr, Yr) +WMc (Xc, Yc).

min
�

∑

T∈S

W
Mr

Mc
(� (T),�)

= min
�r

∑

T∈S

WMr (�r(T),�r) +min
�c

∑

T∈S

WMc (�c(T),�c)

V(T1) :

V(T2) :

V(T3) :

V(T4) :

V(T5) :

T1 :

T2 :

T3 :

T4 :

T5 : µ2

µ1

Fig. 10  Conceptual visualization of the mapping of 2-unfolding trees into � (2) space. Center points �1,�2 
minimize the sum of distances (defined by WM

r

M
c

 ) to all points in the clusters (depicted blue). Thus, the cor-
responding unfolding trees within a cluster have pairwise small SDTED
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Appendix 3 Complexity analysis

The computation of clusters over a set of i-unfolding trees T (i) requires the respective dis-
tance matrix Mc . As |T (i)| is bounded by the number of vertices N in graph dataset G for all 
values i, Mc can be computed by O(N2) invocations of the Wasserstein distance function. 
Employing a linear programming solution yields a complexity of Õ(N3) for each such invo-
cation, which can however be improved using approximation methods (Cuturi, 2013). We 
note that generally |T (i)| ≪ N for relatively small i, which immensely lowers the complex-
ity for the calculation of Mc as well as Wasserstein distance computations in practice.

Let us consider a single iteration of the k-means Wasserstein algorithm. The assign-
ment step of the above algorithm requires kN invocations of the Wasserstein distance func-
tion. To compute the set of cluster centers, we consider the Iterative Bregman Projections 
algorithm which provides an �-approximation yielding an overall complexity of Õ( k(2d)

2N3

2𝜖
) 

(Kroshnin et al., 2019) in the update step.

Appendix 4 Experimental evaluation (cont.)

In this section we provide additional experimental evaluations.
Datasets. We include several molecular benchmark datasets (Morris et al., 2020) which 

contain small graphs of fairly simple structure, i.e., they have roughly as many nodes as 
edges and a small maximum degree. The datasets are annotated for binary target proper-
ties. Detailed structural information on these graphs can be found in Table 3.

Evaluation. Figure  11 shows classification accuracies for real-world molecular data-
sets. On all datasets, our approach is in close range to the best performing kernels. Only, 
for NCI1 there is a noticeable performance gap of about 4% . To statistically evaluate the 
results, we performed two-sample t-tests (with a significance threshold of 0.05) corrected 
by the Bonferroni method to make up for the number of tests within each dataset. The 
results show that for none of the datasets there is a method that significantly outperforms 
all others.

The overall results suggest that a relaxation of the Weisfeiler-Lehman kernel is not 
advantageous when applied to these simple molecular graphs. This may be explained by 

Table 3  Structural information of molecular graph benchmark datasets |D|, |C|, and � , denote the number 
of graphs, number of classes, and maximum degree in a dataset. �0 is the number of distinct vertex labels. 
�1,�2,�3 are the amounts of distinct Weisfeiler-Lehman labels for depth h = 1, 2, 3 , respectively

Dataset |D| |C| ∅|V| ∅|E| ∅|E|
∅|V|

� Number of node labels

�0 �1 �2 �3

BZR 405 2 35.8 38.4 1.1 4 10 89 677 2058
COX2 467 2 41.2 43.4 1.1 4 8 71 537 1610
DHFR 756 2 42.4 44.5 1.0 4 9 71 630 2478
MUTAG 188 2 17.9 19.8 1.1 4 7 33 174 572
NCI1 4110 2 29.9 32.3 1.1 4 37 292 4058 23k
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the assumption that structurally similar unfolding trees (corresponding to e.g. functional 
groups) can have completely opposing chemical properties. Clustering might thus even be 
disadvantageous for this kind of data. It is noteworthy that except for the datasets DHFR 
and NCI1, the simple histogram baseline kernel ( VE-Hist ) is on par with the best perform-
ing kernels.

Investigation of the depth parameter h

Figure 12 investigates the influence of the depth parameter h on the predictive performance 
of our kernel variant R-WL* for datasets IMDB-B, REDDIT-B and the EGONETS-1 to 
EGONETS-4. The results show a significant increase from h = 1 to h = 2 , while in the 
majority of considered datasets, the predictive performance does not notably change any 
further for values h > 2.
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Fig. 11  Classification accuracies and std. deviations for molecular datasets in %
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