
Vol.:(0123456789)

Machine Learning (2022) 111:2601–2629
https://doi.org/10.1007/s10994-022-06131-w

1 3

A generalized Weisfeiler‑Lehman graph kernel

Till Hendrik Schulz1 · Tamás Horváth1,2,3 · Pascal Welke1 · Stefan Wrobel1,2,3

Received: 31 January 2021 / Revised: 3 December 2021 / Accepted: 6 February 2022 /
Published online: 27 April 2022
© The Author(s) 2022

Abstract
After more than one decade, Weisfeiler-Lehman graph kernels are still among the most
prevalent graph kernels due to their remarkable predictive performance and time complex-
ity. They are based on a fast iterative partitioning of vertices, originally designed for decid-
ing graph isomorphism with one-sided error. The Weisfeiler-Lehman graph kernels retain
this idea and compare such labels with respect to equality. This binary valued comparison
is, however, arguably too rigid for defining suitable graph kernels for certain graph classes.
To overcome this limitation, we propose a generalization of Weisfeiler-Lehman graph ker-
nels which takes into account a more natural and finer grade of similarity between Weis-
feiler-Lehman labels than equality. We show that the proposed similarity can be calculated
efficiently by means of the Wasserstein distance between certain vectors representing Weis-
feiler-Lehman labels. This and other facts give rise to the natural choice of partitioning
the vertices with the Wasserstein k-means algorithm. We empirically demonstrate on the
Weisfeiler-Lehman subtree kernel, which is one of the most prominent Weisfeiler-Lehman
graph kernels, that our generalization significantly outperforms this and other state-of-the-
art graph kernels in terms of predictive performance on datasets which contain structurally
more complex graphs beyond the typically considered molecular graphs.

Keywords Graph kernel · Weisfeiler-Lehman · Tree edit distance · Wasserstein distance

Editor: Sergio Escalera.

 * Till Hendrik Schulz
 schulzth@cs.uni-bonn.de

 Tamás Horváth
 horvath@cs.uni-bonn.de

 Pascal Welke
 welke@cs.uni-bonn.de

 Stefan Wrobel
 wrobel@cs.uni-bonn.de

1 Department of Computer Science, University of Bonn, Bonn, Germany
2 Fraunhofer IAIS, Sankt Augustin, Germany
3 Center for Machine Learning, Sankt Augustin, Germany

http://orcid.org/0000-0003-3163-325X
http://orcid.org/0000-0001-6852-6939
http://orcid.org/0000-0002-2123-3781
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06131-w&domain=pdf

2602 Machine Learning (2022) 111:2601–2629

1 3

1 Introduction

Since Haussler’s pioneer work (Haussler, 1999) on convolution kernels over discrete
structures, graph kernels have become one of the most common tools for learning with
graphs. One prominent family of graph kernels is the Weisfeiler-Lehman kernel frame-
work (Shervashidze et al., 2011), which relies on the Weisfeiler-Lehman label propagation
algorithm (Weisfeiler & Lehman, 1968), originally designed for deciding isomorphism
between graphs. To this day, graph kernels based on the Weisfeiler-Lehman label propa-
gation algorithm rank among the very best state-of-the-art graph kernels on a majority of
benchmark datasets, as has been experimentally shown in a recent survey (Kriege et al.,
2020). Motivated by their outstanding predictive performance, in this work we focus on
graph kernels based on the Weisfeiler-Lehman label propagation algorithm.

The main idea behind the algorithm in Weisfeiler and Lehman (1968) is that it itera-
tively relabels vertices by propagating neighborhood information. Each such label implic-
itly corresponds to a rooted tree, called unfolding tree (see Fig. 1b). This iterative vertex
relabeling procedure can in fact be combined with any classical graph kernel (e.g. Gärtner
et al., 2003; Borgwardt and Kriegel, 2005; Shervashidze et al., 2009, 2011). For simplic-
ity, we limit the discussion to the most established member of the family, the Weisfeiler-
Lehman subtree kernel (Shervashidze et al., 2011). However, we note that our approach
can be applied to all graph kernels relying on the Weisfeiler-Lehman label propagation
algorithm.

This and other Weisfeiler-Lehman graph kernels are conceptually limited to comparing
Weisfeiler-Lehman vertex labels, or equivalently, unfolding trees, w.r.t. equality. While this
comparison is extremely well-suited for deciding graph isomorphism, which was the origi-
nal problem considered by Weisfeiler and Lehman, it is arguably too restrictive for defin-
ing similarities, in particular, graph kernels. As an example, consider the unfolding trees
depicted in Fig. 1b. While T1 visibly resembles T2 much more than T3 , Weisfeiler-Lehman
graph kernels simply treat them all as unequal and are thus unable to quantify the apparent
difference among the pairwise similarities between these three unfolding trees.

Motivated by these considerations, we generalize Weisfeiler-Lehman graph kernels
by relaxing the above strict comparison of unfolding trees. In particular, instead of

G2 :G1 :

G3 :

(a)

T2 :

≡

T1 :

≡

≡

T3 :

(b) (c)

Fig. 1 a depicts (initially unlabeled) graphs where vertices are labeled with the first two Weisfeiler-Lehman
labels (colored). b shows the rooted unfolding trees corresponding to the blue, yellow and pink WL-labels,
each representing a neighborhood. T1 (blue) differs from T2 (yellow) by only a single vertex while it differs
from T3 (pink) by significantly more. The tree edit distance between T1 and T2 is therefore much smaller than
that between T1 and T3 . c conceptually visualizes the latent space representing the pairwise tree edit dis-
tances between unfolding trees. Clusterings in this space identify groups of pairwise similar unfolding trees

2603Machine Learning (2022) 111:2601–2629

1 3

distinguishing between Weisfeiler-Lehman labels (or equivalently, unfolding trees) by
the binary valued equality relation, we propose a natural similarity measure to com-
pare them on a much finer grade. This distance between Weisfeiler-Lehman labels is
a modified tree edit distance between their respective unfolding trees, which provides
a semantically adequate comparison for this kind of trees. We show that in contrast to
more general tree edit distances, this distance can in fact be efficiently calculated.

The key concept of our generalization is to identify groups of similar Weisfeiler-
Lehman labels by clustering (visualized in Fig. 1c). The elements within a cluster are
then treated as equal labels. That is, we generalize the ordinary Weisfeiler-Lehman
graph kernels by regarding two unfolding trees equivalent if they belong to the same
cluster, i.e., have a small distance to each other. In this way, the ordinary Weisfeiler-
Lehman graph kernel becomes the special case in which labels are considered equiv-
alent if and only if they have distance zero. For partitioning the Weisfeiler-Lehman
labels, we use Wasserstein k-means clustering (Irpino et al. 2014). This choice is moti-
vated by our result that our adaptation of tree edit distance between unfolding trees can
in fact be reformulated in terms of the Wasserstein distance.

We have empirically evaluated the predictive performance of our generalization of
the Weisfeiler-Lehman subtree kernel on various real-world and synthetic datasets.
The experimental results clearly show that while our more general approach does not
result in an improvement on small molecular graphs, which are sparse and structurally
simple, it considerably outperforms state-of-the-art graph kernels, and most impor-
tantly the ordinary Weisfeiler-Lehman subtree kernel, on datasets containing dense
and structurally diverse graphs.

The main contributions of this paper can be summarized as follows:

• We generalize the Weisfeiler-Lehman graph kernels by considering a finer similar-
ity measure between Weisfeiler-Lehman labels than the binary valued comparison
used in the original Weisfeiler-Lehman graph kernels.

• To do this, we introduce a specifically adapted tree edit distance for unfolding trees
which provides a natural distance definition between the corresponding Weisfeiler-
Lehman labels and propose a polynomial-time algorithm for computing this type of
tree edit distance.

• We show that the concept of Wasserstein k-means clustering (Irpino et al. 2014)
can be used for partitioning Weisfeiler-Lehman unfolding trees (or equivalently
Weisfeiler-Lehman labels) w.r.t. the above natural tree edit distance.

• We empirically evaluate our generalized kernel on various benchmark datasets and
show that it significantly outperforms state-of-the-art graph kernels, including the
ordinary Weisfeiler-Lehman subtree kernel on graph datasets beyond the typically
considered molecular graphs.

The rest of the paper is organized as follows. We collect the necessary notions in
Sect. 2, define our adapted notion of the tree edit distance and discuss its algorithmic
aspects in Sect. 3. We present our generalization of Weisfeiler-Lehman graph kernels
in Sect. 4 and cover related work in Sect. 5. Finally, we report the empirical results in
Sect. 6 and conclude in Sect. 7.

2604 Machine Learning (2022) 111:2601–2629

1 3

2 Preliminaries

Graphs. An (undirected) graph G = (V ,E,�) consists of a finite set V of vertices, a set
E ⊆ {X ⊆ V ∶ |X| = 2} of edges, and a label function � ∶ V → � for some finite alpha-
bet � . When G is clear from the context, we use n ∶= |V| and m ∶= |E| . For v ∈ V , N(v)
is the set of neighbors of node v. Two graphs G,G′ are isomorphic, denoted G ≡ G′ , if
there exists a bijective function between the vertices of G and those of G′ preserving all
edges and labels in both directions. A (rooted) tree is a connected graph T = (V ,E) that
has n − 1 edges and a root r(T) ∈ V . For any v ∈ V ⧵ {r(T)} , par(v) is the parent of v,
i.e., the unique neighbor of v on the path to r(T); accordingly, the children of v are all
vertices that have v as parent. The subtree rooted at v, denoted T[v], is the subgraph of
T with r(T[v]) = v induced by the set of descendants of v. F(v) then denotes the set of
subtrees rooted at the children of v.

Tree edit distance. Let ⊥ ∉ 𝛴 be a special blank symbol. For 𝛴⊥ = 𝛴 ∪ {⊥} we define
a cost function 𝛾 ∶ 𝛴⊥ × 𝛴⊥

→ ℝ and require � to be a metric. An edit script or edit
sequence from a tree T into a tree T ′ is a sequence of edit operations turning T into T ′ .
An edit operation can (i) relabel a single node v, (ii) delete v and connect all its children
to the parent of v, or (iii) insert a single node w between v and a subset of v’s children.
The cost of such edit operations is defined by � ; relabeling v from a to b costs �(a, b) and
adding or deleting v costs 𝛾(�(v),⊥) . An edit script between T and T ′ of minimum cost is
called optimal and its cost is called tree edit distance. It is a metric if � is a metric.

Wasserstein distance. The Wasserstein distance is a distance function between prob-
ability distributions on some given metric space. Intuitively, it can be viewed as the
minimum cost necessary to transform one pile of earth into another. It is also known as
the earth movers distance or optimal transportation distance. More precisely, given two
vectors x ∈ ℝ

n and x� ∈ ℝ
n� with ‖x‖1 = ‖x�‖1 and a cost matrix Cn×n� containing pair-

wise distances between entries of x and x′ , the Wasserstein distance is defined by

with T (x, x�) ⊆ ℝ
n×n� and T�n� = x , �⊤

n
T = x� for all T ∈ T (x, x�) , where ⟨., .⟩ is the Frobe-

nius inner product. A T ∈ T (x, x�) is called transport matrix and a minimizer of the above
is called optimal transport matrix. If the cost matrix is defined by a metric, then the Was-
serstein distance is a metric. For a set of vectors x1, ..., xk ∈ ℝ

n and a cost matrix Cn×n , we
define the barycenter as

3 The Weisfeiler‑Lehman tree edit distance

In this section, we briefly recap the Weisfeiler-Lehman label propagation algorithm
(Weisfeiler & Lehman, 1968) and define a distance on Weisfeiler-Lehman labels. We
give an algorithm computing this distance and prove that it can be calculated in polyno-
mial time.

W C(x, x�) = min
T∈T (x,x�)

⟨T ,C⟩

argmin
c∈ℝn

∑

i∈[k]

W C(xi, c).

2605Machine Learning (2022) 111:2601–2629

1 3

3.1 The Weisfeiler‑Lehman method

The Weisfeiler-Lehman (WL) method (Weisfeiler & Lehman, 1968) was originally
designed to decide isomorphism between graphs with one-sided error. Its key idea is to
iteratively refine a partitioning of the vertex set by compressing the labels of each node and
its neighbors into a new label. This is done by concatenating a node’s label and its ordered
(multi-)set of neighbor labels and subsequently hashing it to a new label by a perfect hash
function. Thus, with each iteration, labels incorporate increasingly large substructures.
The injectivity of the hash function ensures that different sorted lists of labels cannot be
mapped to the same (new) label.

More precisely, let G = (V ,E,�0) be a graph with initial vertex label function
�0 ∶ V → �0 , where �0 is the alphabet of the original vertex labels. In case of unlabeled
graphs, we assume all vertices to have the same mutual label. Assuming that there is a total
order on alphabet �i for all i ≥ 0 , the Weisfeiler-Lehman algorithm recursively computes
the new label of v in iteration i + 1 by

for all vertices v, where the list of labels in the second argument of f# is sorted by the
total order on �i and f# ∶ �i × �∗

i
→ �i+1 is a perfect (i.e., injective) hash function. Two

graphs G,G′ are not isomorphic if the corresponding multisets {{�i(v) ∶ v ∈ V(G)}} and
{{�i(v

�) ∶ v� ∈ V(G�)}} are different for some i ∈ ℕ ; otherwise they may or may not be iso-
morphic. However, G ≡ G′ holds with high probability when the two multisets are equal
(Babai & Kucera, 1979).

Shervashidze et al. (2011) employed the Weisfeiler-Lehman method to define a fam-
ily of parameterized kernels measuring the similarity between graphs based on their
relabeled versions. For a graph G = (V ,E,�0) they consider the sequence of WL-graphs
G0,G1, ...,Gh with Gi = (V ,E,�i) , where h is the number of performed WL iterations. The
Weisfeiler-Lehman kernel of depth h for two graphs G,G′ , given some base graph kernel k,
is then defined as

In other words, the kernel k is applied to G,G′ for all labeling functions �i (0 ≤ i ≤ h)
and the h + 1 values obtained are subsequently summed up. We note that each component
k(Gi,G

�
i
) in kh

WL
(G,G�) can be assigned a non-negative real weight �i . This allows e.g. to

emphasize larger substructures (i.e., labels in higher iterations contribute more to the over-
all similarity). While the base kernel k can be an arbitrary positive semi-definite kernel
on graphs, for simplicity we focus on the subtree kernel (Shervashidze et al., 2011) which
employs the base kernel

where � is the Kronecker delta. Thus, kh
WL

 simply counts the pairs of matching labels of all
WL-iterations. With complexity O(hm), where m is the number of edges, the WL subtree
kernel is highly efficient and has proven to provide state-of-the-art results on a broad range
of datasets (Kriege et al., 2020).

Another view of the Weisfeiler-Lehman label propagation is that for each iteration i, it
implicitly constructs tree patterns of depth i which are being compressed into new labels.

�i+1(v) = f#(�i(v), [�i(u) ∶ u ∈ N(v)]) ∈ �i+1

kh
WL

(G,G�) =
∑

i=0,...h

k(Gi,G
�
i
).

k(Gi,G
�
i
) =

∑

v∈V

∑

v�∈ V �

�(�i(v),�i(v
�)),

2606 Machine Learning (2022) 111:2601–2629

1 3

Each such tree, denoted Ti(G, v) , is called the depth-i unfolding tree (or simply, i-unfolding
tree) of G at v. It corresponds to all possible walks of length i starting at node v (Dell et al.,
2018). Figure 2 visualizes this concept and illustrates that there is a function from the verti-
ces in the unfolding tree of G at v into the corresponding vertices of graph G. Thus, a node
of G can appear several times in Ti(G, v) for i > 1 . It is easy to see that there is a bijection
between labels in �i and the set of (pairwise non-isomorphic) i-unfolding trees.

3.2 The structure and depth preserving tree edit distance

While the strict comparison of labels, or equivalently, that of unfolding trees is advanta-
geous for the original intention of the Weisfeiler-Lehman method, it is a severe drawback
of all Weisfeiler-Lehman graph kernels, including the Weisfeiler-Lehman subtree kernel.
The reason is that comparing unfolding trees with each other by equality (i.e., tree iso-
morphism), or equivalently, taking merely into account whether the labels of vertices and
those of their neighborhoods differ or not, is arguably too restrictive for kernel design, as
in case of kernels, we are interested in defining similarities. Our typical observation is that
the i-unfolding trees (i.e., labels at iteration i) of most vertices will be unique for very small
values of i. In other words, the limitation of the Weisfeiler-Lehman graph kernels is that
two structurally completely different unfolding trees are treated identically to two unfold-
ing trees which differ by only very little.

To overcome this drawback, we propose a finer label comparison by defining a new
similarity measure between unfolding trees that employs a specialized form of the well-
known tree edit distance. On an abstract level, the tree edit distance measures the minimum
amount of edit operations necessary to turn one tree into another. Calculating this distance
is NP-hard in general (see, e.g., Bille, 2005). However, for our purpose it suffices to con-
sider a restricted type of tree edit distance which preserves essential properties of unfolding
trees. Below we show that, in contrast to the general case, this variant can be calculated
efficiently.

The construction procedure of unfolding trees as demonstrated above shows that
they reflect the neighborhoods of a specific vertex. Therefore, we require the edit scripts
between unfolding trees to preserve the neighborhood relationships of vertex pairs as
well as the depth of vertices. This leads to the following definition of constrained tree edit
scripts:

Definition 1 A structure and depth preserving mapping (SDM) between two rooted trees
T and T ′ is a triple (M,T , T �) with M ⊆ V(T) × V(T �) satisfying

G :
1

2 3

4 5

6

2

1 4

3

1 5

4

1 2 6

5

1 3 6

1
v T 2(G, v) :

(a)

G′ : T 2(G′, v′) :
1

2 3

4 5

6

2

1 4

3

1 5

4

1 2 6

6

1 4 5

1
v′

(b)

Fig. 2 Unfolding trees T2(G, v) and T2(G�, v�) . As v and v′ have structurally similar roles in G, resp. G′ , their
unfolding trees differ only slightly (labeled yellow). The vertex corresponding to v, resp. v′ , appears again
several times at depth 2 of T2(G, v) , resp. T2(G�, v�)

2607Machine Learning (2022) 111:2601–2629

1 3

1. ∀(v1, v
�
1
), (v2, v

�
2
) ∈ M ∶ v1 = v2 ⟺ v�

1
= v�

2
 , (definite)

2. (r(T), r(T �)) ∈ M , (root preserving)
3. ∀(v, v�) ∈ M ∶ (par(v), par(v�)) ∈ M . (structure preserving)

The set of all structure and depth preserving mappings between T and T ′ is denoted by
SDM(T , T �).

SDM s represent sequences of edit operations subject to the above constraints that trans-
form trees into trees. More precisely, for an SDM (M,T , T �) let T = T0, T1,… , Tk be a
sequence of trees such that Ti+1 is obtained from Ti by applying one of the following atomic
transformations:

relabel: If (v, v�) ∈ M , then replace the label of v in Ti by that of v′.
delete: If v is a leaf in Ti and it does not occur in a pair of M, then remove v from Ti.
insert: If v′ is a vertex in T ′ which does not occur in a pair of M and for which the cor-

responding parent u already exists in Ti , then add a child to u with the label of v′.

The proof of the following claim is straightforward.

Proposition 1 Let (M,T , T �) be an SDM and T0 = T , T1,… , Tk be a sequence of trees
obtained by the above atomic transformations such that every v ∈ T and v� ∈ T � has been
considered in exactly one transformation. Then Tk = T �.

Note that SDM s uphold some essential properties of unfolding trees. In particular, they
ensure that siblings are preserved (i.e., for any SDM (M,T , T �) , v′

1
 and v′

2
 are siblings in T ′

whenever (v1, v�1), (v2, v
�
2
) ∈ M and v1, v2 are siblings in T) and that vertices can only be

mapped onto vertices of the same depth. Recall, that our goal is to measure similarities
between neighborhoods of vertices. It is thus essential that roots are being preserved; this is
guaranteed by the second constraint in Def. 1. Furthermore, Def. 1 implies that M maps a
connected subtree of T onto a connected subtree of T ′ . That is, the first (resp. second) com-
ponents of the pairs in M form a connected subtree of T (resp. T ′).

Figure 3 demonstrates the motivation of SDM s. The mapping displayed in Fig. 3a is a
structure and depth preserving mapping from T into T ′ which visibly preserves the depth as
well as the pairwise sibling relationships for all mapped vertices. In contrast, while the edit
script in Fig. 3b is valid for more general definitions of edit operation sequences, the trans-
formation constructs a tree which heavily distorts neighborhood relationships and arbitrar-
ily inserts nodes such that the set of vertices in T ′ touched by a line preserve only very little
of the topology of those in T. In particular, leafs that have distance 4 from each other in T
are mapped onto vertices in T ′ which are now direct siblings. Furthermore, the mapping
does not maintain root nodes, as a root is mapped to a non-root node.

Using these notions, we are ready to define the distance between unfolding trees.

Definition 2 Let T , T ′ be unfolding trees over a vertex label alphabet � and
𝛾 ∶ 𝛴⊥ × 𝛴⊥

→ ℝ a cost function (i.e., metric), where ⊥ is the blank symbol. Then the cost
for an SDM (M,T , T �) is

𝛾(M) =
∑

(v,v�)∈M

𝛾(�(v),�(v�)) +
∑

v∈N

𝛾(�(v),⊥) +
∑

v�∈N�

𝛾(⊥,�(v�))

2608 Machine Learning (2022) 111:2601–2629

1 3

where N (resp. N′) are the vertices of T (resp. T ′) that do not occur in any pair of M. The
structure and depth preserving tree edit distance from T into T ′ , denoted SDTED(T , T �) , is
then defined by

Thus, the cost of an SDM (M,T , T �) is defined by the sum of the individual costs of
relabeling, insertion, and deletion operations over all vertices of T and T ′ , where the cost
of the insertion (resp. deletion) of a vertex v is given by 𝛾(�(v),⊥) (resp. 𝛾(⊥,�(v))). The
structure and depth preserving tree edit distance between trees T and T ′ is then simply the
minimal cost over all possible mappings.

Algorithm 1 Compute SdTed

input: Trees T, T ′, cost function γ : Σ⊥ ×Σ⊥ → R
output: Structure and depth preserving tree edit distance between T and T ′

SdTed(T, T ′):
1: F := F (r(T)), F ′ := F (r(T ′))
2: Pad F and F ′ with empty trees T⊥ such that |F | = |F ′| = deg(r(T)) + deg(r(T ′))
3: for all Ti ∈ F, T ′

j ∈ F ′ do

δij =

SdTed(Ti, T
′
j) if Ti ∈ F (r(T)) and T ′

j ∈ F (r(T ′))
∑

v∈V (Ti)
γ(�(v),⊥) if Ti ∈ F (r(T)) and T ′

j �∈ F (r(T ′))

∑

v′∈V (T ′
j

T ′
j

)
γ(�(v′),⊥) if Ti �∈ F (r(T)) and T ′

j ∈ F (r(T ′))

0 o/w .

4: Let S ⊆ F × F ′ be a minimum cost perfect bipartite matching w.r.t. distances δ
5: return γ(�(r(T)), �(r(T ′))) +

∑
(Ti,)∈S δij

SDTED(T ,T �) = min{�(M) ∶ (M,T , T �) ∈ SDM(T ,T �)}

↓

→

↑

1

2

1 3

1

2

2 31

1

1

2 31

1

2 3

131

(a)

1

1

2 31

1

2 3

131

↓

1

1

1→

↑

1 31 1 31

(b)

Fig. 3 Two mappings from one unfolding tree into another. a depicts a mapping which is structure and
depth preserving whereas the one in b is not. Dashed lines correspond to pairs contained in the respective
mappings M, red vertices are being deleted, blue vertices inserted and yellow vertices relabeled

2609Machine Learning (2022) 111:2601–2629

1 3

3.3 The unfolding tree edit distance algorithm

We now show that for any pair of unfolding trees T ,T ′ , SDTED(T , T �) can efficiently be
calculated in a recursive manner (see Alg. 1). It follows from the properties of SDM s that
subtrees of T are mapped onto subtrees of T ′ . Thus, finding an optimal SDM (i.e. an SDM
of minimal cost) from T into T ′ is equivalent to finding the set of optimal SDM s turning
the trees below the root of T (i.e. F(r(T))) into the trees below the root of T ′ (i.e., F(r(T �))).
In order to find this set of optimal SDM s, we need the pairwise distances SDTED(Ti, T

�
j
)

between all Ti ∈ F(r(T)) and T �
i
∈ F(r(T �)) as well as the costs of deleting, resp. inserting,

trees Ti , resp. T ′
j
 . The computation of these costs is done in line 3 of Alg. 1. The first case

recursively calculates the SDTED(Ti, T
�
j
) for all pairs of trees in F(r(T)) and F(r(T �)) . The

second case considers the instance where the root of some tree Ti is not part of a mapping,
which implies that all vertices in Ti are deleted. A similar argument follows for the inser-
tion of trees T ′

j
 (third case of line 3). The task of finding an optimal SDM can in fact be

reduced to the minimum cost perfect bipartite matching problem as follows: Let the sets of
trees below the roots of T and T ′ be F = {T1,… , Tk} and F� = {T �

1
,… , T �

k�
} , respectively.

We first expand the set of trees F by k′ , resp. F′ by k, auxiliary empty graphs T⊥ (line 2)
such that both sets have equal cardinality. The distance (� in Alg. 1) between a tree and an
empty graph is defined as the cost of deleting, resp. inserting that tree. Furthermore, two
empty graphs clearly have distance 0. One can check that the optimal set of SDM s directly
corresponds to a perfect bipartite matching of minimum cost between trees in the expanded
sets F and F′ (line 4) with distances as defined above. Finally, the SDTED between trees
T and T ′ is the cumulative cost of the distance between their roots and the minimal cost
perfect bipartite matching between the trees below them (line 5). The above considerations
imply the following result:

Theorem 1 Given unfolding trees T ,T ′ with labels from � and a cost function
𝛾 ∶ 𝛴⊥ × 𝛴⊥

→ ℝ over 𝛴⊥ , Alg. 1 returns SDTED(T , T �).

As an example, consider the SDTED between graphs T and T ′ of Fig. 4a. We assume
that each insertion, deletion, and relabeling operation has cost 1. Following Definition
1, the root of T is mapped onto the root of T ′ . As both vertices have the same label, the
respective cost is zero (i.e. �(�(v1),�(v�1)) = 0). Due to the structure preserving property of
SDM s, calculating the edit costs for the remaining vertices beneath the roots comes down
to matching (resp. inserting and deleting) the highlighted subtrees. It can easily be checked
that matching T[v2] with T[v�

2
] (which has cost 2) and thus deleting T[v3] (which has cost 2)

has minimal cost over all possible matchings. The individual edit operations corresponding
to this case are depicted in Fig. 3a.

By the construction of unfolding trees, vertices closer to v in G begin to appear at
smaller depths in Ti(G, v) . In fact, the number of occurrences in Ti(G, v) of a node u ∈ V(G)
grows exponentially with i once it has appeared for the first time. This indirectly assigns
higher weights to vertices closer to v in the calculation of the structure and depth preserv-
ing tree edit distance.

Notice that Algorithm 1 describes a naive implementation which in general requires
an exponential number of recursion calls. However, it is easy to see that the number of
i-unfolding trees in T and T ′ is bounded by their sizes n = V(T) and n� = V(T �) . Once
SDTED(Ti, Tj) between two i-unfolding trees Ti, Tj has been calculated, it can be stored in
a lookup table. Thus, for each level i, we need to invoke Algorithm 1 a maximum of nn′

2610 Machine Learning (2022) 111:2601–2629

1 3

times. With a lookup table for distances between unfolding tree pairs we thus require at
most nn′h invocations of a minimum cost perfect bipartite matching algorithm, each of
complexity Õ(d3) , where h is the depth and d the maximum degree of T ,T ′.

4 The generalized Weisfeiler‑Lehman subtree kernel

Using the definitions and results of Sect. 3, we now introduce our novel generalized Weis-
feiler-Lehman subtree kernel and show that it is in fact a generalization of the original
Weisfeiler-Lehman subtree kernel (Shervashidze et al. 2011). Its key idea is to relax the
rigid comparison of unfolding trees by equality (i.e., isomorphism) used in the original
Weisfeiler-Lehman graph kernel by considering the structure and depth preserving dis-
tances between unfolding trees. Using SDTED , we identify groups of similar trees by
means of hard clustering. This ensures that similar unfolding trees will belong to the same
clusters, while dissimilar to different ones. Two unfolding trees are then regarded equiva-
lent by the relaxed Weisfeiler-Lehman subtree kernel iff they belong to the same cluster.

More precisely, for a set G of graphs, let �i be a set of hard clustering functions (i.e.,
partitionings) of the set of depth-i unfolding trees T (i) appearing in the graphs in G . We
regard each element of �i as a function � ∶ T (i)

→ [k] , where k is the number of clusters
defined by � . Then, for any graphs G,G� ∈ G and depth parameter h, the relaxed Weisfeiler-
Lehman subtree kernel is defined by

where � is the Kronecker delta. The proof to the following is straightforward and can be
found in Appendix 1.

Theorem 2 The generalized Weisfeiler-Lehman subtree kernel kh
R-WL

(G,G�) is positive
semi-definite.

kh
R-WL

(G,G�) =
∑

i=0,..,h

∑

�∈�i

∑

v∈V

∑

v�∈ V �

�(�(Ti(G, v)), �(Ti(G�, v�))),

1

1

2 31

1

2 3

131

T : T ′ :

v2 v3 v′2

v1 v′1

(a)

⊥

⊥

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

Mr :

⊥

⊥

0 2 2 3
2 0 3 2
2 3 0 4
3 2 4 0

Mc :

1 2 3
1
2
3

(b)

Fig. 4 b Computing SDTED(T ,T �) for trees T and T ′ in a requires the costs for mapping the root nodes
as well as for matching the highlighted subtrees onto another. The corresponding costs Mr , resp. Mc ,
are provided in b. Following the order on node labels, resp. child trees, as in Mr , resp. Mc , the unfold-
ing tree vectors of T and T ′ have the form �r(T) = [1, 0, 0, 0] , �c(T) = [1, 1, 0, 1] and �r(T

�) = [1, 0, 0, 0] ,
�c(T

�) = [0, 0, 1, 2] . One can check that WM
r (�

r
(T),�

r
(T �)) = 0 and WM

c (�
c
(T),�

c
(T �)) = 4 , resulting in

SDTED(T ,T �) = WM
r (�

r
(T),�

r
(T �)) + WM

c (�
c
(T),�

c
(T �)) = 4

2611Machine Learning (2022) 111:2601–2629

1 3

Notice that kh
R-WL

 is equivalent to the original Weisfeiler-Lehman subtree kernel kh
WL

 for
the case that �i = {�i} with �i defined as follows: For all T , T � ∈ T (i) , �i(T) = �i(T

�) iff T
and T ′ are isomorphic (or equivalently, SDTED(T , T �) = 0). Thus, our definition general-
izes the ordinary Weisfeiler-Lehman subtree kernel in two ways: First, while the ordinary
Weisfeiler-Lehman subtree kernel regards two unfolding trees T ,T ′ to be equivalent iff
SDTED(T , T �) = 0 , our definition allows SDTED(T , T �) ≥ 0 as well. Second, our definition
enables more than one partitioning (or hard clustering) function, in contrast to kh

WL
.

We employ the concept of Wasserstein k-means clustering (Irpino et al. 2014) as a
method to partition the set of unfolding trees. This choice is motivated by several argu-
ments. As mentioned above, the purpose of clustering is to group similar unfolding trees
w.r.t. SDTED . We therefore require the clusters to be convex such that unfolding trees of a
cluster ideally have pairwise small distance. Another requirement is to be able to control
the number of clusters which also influences the complexity of the approximation vari-
ant of the generalized Weisfeiler-Lehman kernel discussed in Sect. 4.1. We show that the
SDTED can in fact be calculated using the discrete Wasserstein distance. Thus, we use the
same distance in the cost matrix as in the clustering process. Finally, the Wasserstein dis-
tance has recently been the focus of comprehensive research leading to fast approximation
methods for distance and center computations (Cuturi & Doucet, 2014; Cuturi, 2013).

Below we address the most important ingredients of Wasserstein k-means needed for
our purpose. In particular, we first discuss how unfolding trees can be represented by real-
valued vectors. Subsequently, we state that the Wasserstein distance between such vectors
corresponds to the SDTED of the respective unfolding trees. This representation, further-
more, allows for the calculation of center points using Wasserstein barycenters. To keep
the presentation concise we solely outline these concepts in this article. We provide a more
detailed description and a complexity analysis in Appendices 2 and 3.

Unfolding Tree Vectors In order to effectively apply Wasserstein k-means, we represent
i-unfolding trees by (sparse) real-valued vectors. Recall that the structure and depth pre-
serving tree edit distance is calculated as the sum of

(A) the distance between the root nodes and
(B) the minimum cost of the perfect bipartite matching between child trees below these

roots

as described in Alg. 1. We accordingly represent an i-unfolding tree T as a pair of vec-
tors � (T) = (�r(T),�c(T)) , where

(A) �r(T) encodes the root node’s label �(r(T)) and
(B) �c(T) encodes the set of (i − 1)-unfolding child trees F(r(T)) below the root r(T).

We define �r(T) as a one-hot vector with entry 1 at index corresponding to its root node
label �(r(T)) and 0 everywhere else. �c(T) corresponds to a histogram counting isomor-
phic child trees below the root. Analogously to Alg. 1, the vector �c(T) furthermore
contains an entry for empty child trees (⊥) to account for insertion and deletion. We
give an example of these vector representations in the description of Fig. 4.

2612 Machine Learning (2022) 111:2601–2629

1 3

4.1 Wasserstein Distance on Unfolding Tree Vectors

Using the vector representations of unfolding trees, we are able to reformulate the com-
putation of the structure and depth preserving distance in terms of the Wasserstein dis-
tance. We show that the structure and depth preserving distance between trees T ,T ′ can
in fact be calculated as the sum of (A) the Wasserstein distance between the root node
vectors �r(T),�r(T

�) and (B) the Wasserstein distance between the child tree histogram
vectors �c(T),�c(T

�) . More precisely, assume that the pairwise distances between child
trees (as well as the empty tree) have already been calculated and are stored in a matrix
Mc . Furthermore, let Mr be the distance matrix between the original node labels. It can
easily be shown that for two depth-i unfolding trees T and T ′ , the distance between their
root nodes is equal to WMr (�r(T),�r(T

�)) . Furthermore, the calculation of the minimum
cost perfect bipartite matching between the sets of child trees below these roots (cf. Alg.
1) can be reduced to computing the Wasserstein distance between �c(T) and �c(T

�) , i.e.,
WMc (�c(T),�c(T

�)) . This can be shown using the following lemma which follows from the
integral flow theorem.

Lemma 1 For x, x� ∈ ℕ
d there exists a transportation matrix T ∈ T (x, x�) with T ∈ ℕ

d×d
such that ⟨T ,C⟩ = W C(x, x�) for any cost matrix C ∈ ℝ

d×d.

This lemma implies that the minimum cost perfect bipartite matching between the sets
of child trees in T and T ′ is equivalent to WMc (�c(T),�c(T

�)) . Putting all together we have:

An example demonstrating this equivalence is given in Fig. 4.

4.2 Unfolding Tree Barycenters

The above reformulation allows to calculate barycenters of sets of unfolding trees to per-
form Wasserstein k-means (Irpino et al., 2014). A barycenter of a set S of unfolding trees is
a point which minimizes the sum of distances to unfolding tree vectors corresponding to S.
Similarly to unfolding tree vectors, this barycenter is a pair of real-valued vectors (�r,�c) ,
where �r is the center of the �r s and �c of the �c s. Formally, the barycenter of S is a pair
(�r,�c) defined by:

Note that the set of considered vectors �r , resp. �c , need to have equal mass, i.e. l1-norm,
in order to compute barycenters. This is accomplished by adjusting the entry correspond-
ing to the empty tree (⊥) by an adequate number. While a barycenter, in general, does not
correspond to an existing unfolding tree, the Wasserstein distance between an unfolding
tree vector � (T) = (�r(T),�c(T)) and a center vector � = (�r,�c) can be computed none-
theless as follows:

SDTED(T ,T �) = WMr (�r(T),�r(T
�)) +WMc (�c(T),�c(T

�)).

(1)argmin
�r ,�c

∑

T∈S

WMr (�r(T),�r) +WMc (�c(T),�c)

(2)WMr (�r(T),�r) +WMc (�c(T),�c)

2613Machine Learning (2022) 111:2601–2629

1 3

4.3 The Wasserstein k‑Means Algorithm for Unfolding Trees

Using the above concepts, the Wasserstein k-means clustering algorithm can be stated in
form of Lloyd’s algorithm (Lloyd, 1982).

 i. In the initialization step, a subset of k unfolding trees is selected as initial centers.
 ii. Each unfolding tree is then assigned to its nearest center point (using Eq. (2)).
 iii. Finally, the centers of the newly defined clusters are recalculated (using Eq. (1)).

Steps (ii) and (iii) are repeated until clusters do not change anymore, i.e., the algorithm
converges, or a predefined number of iterations has been reached.

4.4 A faster kernel variant

For many graph datasets the number of unfolding trees,1 grows rapidly with increasing
iterations (although it is bounded by the total number of vertices in the database). Dealing
with large amounts of unfolding trees in the Wasserstein k-means step becomes, however,
computationally expensive. We thus propose a practical variant of our kernel that addresses
this issue by approximating distances between unfolding trees using their cluster centers.
Figure 5 shows the high level idea of this approach.

Consider the calculation of pairwise distances between unfolding trees as in Sect. 3.3.
That is, the distances of 0-unfolding trees are defined by the metric � and the SDTED s for
all pairs of (i + 1)-unfolding trees are computed using distances of i-unfolding trees. To
reduce the number of distinct i-unfolding trees T (i) (or equivalently labels �i), we perform
a clustering C1, ...,Ck of T (i) with centers �1, ...,�k as in Sect. 4. We then effectively replace
each i-unfolding tree with its cluster center �j and compute the distance between i-unfold-
ing trees T ∈ Cj, T

� ∈ Cj� by the distance between their cluster centers. More precisely, the
structure and depth preserving tree edit distance between T and T ′ is approximated by

where T and T ′ have been assigned to clusters with centers �j = (�
j
r,�

j
c) , and �j� = (�

j�

r ,�
j�

c) ,
respectively. Subsequently, these distances are used in iteration i + 1 , greatly reducing the

WMr (�j
r
,�j�

r
) +WMc (�j

c
,�j�

c
)

Fig. 5 Visualization of a clus-
tering over a set of unfolding
trees and the respective cluster
centers. Instead of comput-
ing the SDTED for all pairs
of unfolding trees, the kernel
variant kh

R-WL*
 approximates

their distances by the distance
between their center points. E.g.
SDTED(T1,T

�
1
) = WM

r (�
r
(T1),�r

(T �
1
)) +WM

c

(�
c
(T1),�c

(T �
1
)) is approximated

by WM
r (�

r
,��

r
) +WM

c (�
c
,��

c
)

T ′
1

T ′
2

T ′
3

T1

T2

µ

µ′

1 More precisely, the number of pairwise non-isomorphic unfolding trees, i.e., Weisfeiler-Lehman labels.

2614 Machine Learning (2022) 111:2601–2629

1 3

number of distance calculations. That is, in contrast to the computation of kh
R-WL

(G,G�) ,
our kernel variant kh

R-WL*
(G,G�) considers only k labels instead of |T (i)| labels in iteration i.

The concept of clustering unfolding trees (or equivalently WL labels) after each WL
iteration and then continuing the process with representatives of clusters, can be consid-
ered as slowing down the WL relabeling process. When compared to the ordinary Weis-
feiler-lehman relabeling scheme, this generally means that vertices are split into different
label classes at a later iteration.

5 Related work

While conventional graph kernels define similarity in terms of mutual substructures such
as walks (Gärtner et al., 2003), paths (Borgwardt & Kriegel, 2005), small subgraphs
(Shervashidze et al., 2009), or subtrees (Shervashidze et al., 2011), recent work has moved
away from solely counting equivalent substructures.

For example, Kriege et al. (2016) introduce a kernel which computes an optimal assign-
ment between vertices. Similarly, Togninalli et al. (2019) relax this idea and employ the
concept of optimal transportation as a form of “soft-matching” on vertices. Both methods
perform a vertex matching based on node similarities derived from the Weisfeiler-Lehman
hierarchy tree. More precisely, the similarity between two vertices v, v′ is measured in terms
of the maximum depth i ∈ ℕ such that v and v′ have the same i-unfolding trees. Recall that
if the i-unfolding trees of v and v′ differ, so must their j-unfolding trees for all j > i . Conse-
quently, the number of possible similarity values between v and v′ is bounded by the con-
sidered unfolding-tree depth. In extreme scenarios where neighborhoods are highly diverse
such that no two vertices have identical 1-unfolding trees, all vertices are regarded equally
(dis-)similar. A visualization for the limitation of the methods in Kriege et al. (2016) and
Togninalli et al. (2019) is given in Fig. 6. While T1(G, v1) can be considered more similar

v1

v3

v2

(a)

· · · · 21 · · · ·

· · · · 20 · · · ·

T 1(G, v1) :

T 1(G, v2) :

T 1(G, v3) :

(b)

Fig. 6 The neighborhoods of vertices in a are highly diverse. While the neighborhoods of v1 and v2 (as
shown by their unfolding trees in b) are arguably more similar than those of e.g. v1 and v3 , methods relying
on the rigid comparison of Weisfeiler-Lehman labels are unable to quantify the apparent similarity differ-
ences

2615Machine Learning (2022) 111:2601–2629

1 3

to T1(G, v2) than to T1(G, v3) , the methods are unable to quantify the apparent difference
among the pairwise similarities. In contrast, the approach introduced in our article provides
a similarity with a much finer granularity which is capable of making such a distinction.

The concept of comparing vertices by a finer similarity measure than the equivalence
of their neighborhoods was also considered by Da San Martino et al. (2012). In that work,
Da San Martino et al. represent neighborhoods by rooted directed acyclic trees (DAG)
and define a kernel over these DAGs which reflects their similarity. The difference to our
approach is twofold. Firstly, compared to Weisfeiler-Lehman labels, the DAGs describe
structurally different representations of neighborhoods. Secondly, while Da San Martino
et al. (2012) compute similarities by applying tree kernels (e.g. Smola & Vishwanathan,
2003) on sets of trees extracted from the DAGs, we employ the concept of a specific tree
edit distance as similarity measure.

6 Empirical evaluation

We now evaluate the predictive performance of our approach on a set of established as well
as novel real-world and synthetic datasets. Our results show that our approach increasingly
outperforms all considered competitor kernels with growing density of dataset graphs in a
majority of cases. Furthermore, experiments on synthetic graphs indicate that our approach
is more robust to (structural) noise than competing kernels. We provide our implementa-
tion, as well as novel datasets on the accompanying web page.2

We note that in the following, we limit the evaluation to the approximation kernel
R-WL* as discussed in Sect. 4.1. This choice was made due to the fact that while the R-WL
kernel is well applicable to sparse graphs such as molecules, an explicit consideration of all
unfolding trees may become computationally too expensive on more complex graphs.

6.1 Experimental setup

We compare our approach to a selection of graph kernels and provide a baseline method
to put the performances into perspective. We consider the Weisfeiler Lehman subtree
(WL) kernel (Shervashidze et al., 2011), the recently published Wasserstein Weisfeiler-
Lehman graph (WWL) kernel (Togninalli et al., 2019), and the Persistent Weisfeiler-
Lehman (PWL) graph method (Rieck et al., 2019) as examples of approaches that are
based on comparing Weisfeiler-Lehman labels (i.e., unfolding trees) by equality and select
depth parameter from h ∈ [5] . We furthermore consider the graphlet sampling (GS) ker-
nel (Shervashidze et al., 2009) (with parameters � = 0.1 , � = 0.1 and k ∈ {3, 4, 5}) and
the shortest-path (SP) kernel (Borgwardt & Kriegel, 2005) as examples of other kernel
classes. The ODD-STh kernel (Da San Martino et al., 2012) (with parameter h ∈ [4]) com-
pares vertex neighborhoods as directed acyclic graphs and is in that sense most similar to
our approach. We use the implementation of Siglidis et al. (2018) or that of the respective
authors. As a baseline method (VE-Hist), we employ a simple histogram kernel over the
set of edge and node labels. In case of our relaxed Weisfeiler-Lehman kernel R-WL* (as
described in Sect. 4.1), we choose the number of clusters k =

√
��i� , use depth parameter

h up to 4 and unit costs for all relabeling, deletion and insertion operations. We perform

2 https:// github. com/ mlai- bonn/ GenWL.

https://github.com/mlai-bonn/GenWL

2616 Machine Learning (2022) 111:2601–2629

1 3

a total of 3 clusterings. This particular choice for k selects the number of clusters rela-
tive to the amount of Weisfeiler-Lehman labels in each iteration and significantly reduces
the computational complexity of the clustering. We perform a total of 3 clusterings (i.e.
|�i| = 3) to make up for the randomness caused by the k-means initialization step.

We measure the prediction performance in terms of accuracy obtained by support vec-
tor machines (SVM) using a 10-fold cross-validation. If not explicitly chosen otherwise by
the authors of the individual implementations, the parameter C is selected from the value
set 2i ∶ i ∈ {−12,−8,−5,−3,−1, 1, 3, 5, 8, 12} . In each fold, a grid search is used to iden-
tify the optimal kernel parameters. We report the mean and standard deviation over 5 such
cross-validation repetitions.

6.1.1 Datasets

Real-world Datasets We conduct experiments on several social network datasets. The
benchmark datasets IMDB-BINARY and REDDIT-BINARY (IMDB, resp. REDDIT for
short, provided by Morris et al. (2020)) contain subgraphs of online networks. IMDB
consists of collaboration networks between actors, each annotated against movie genres.
Graphs in REDDIT represent user interactions in discussion forums with graphs being
annotated by the type of forum.

Furthermore, we provide a set of novel real-world benchmark datasets extracted from
the social networks Buzznet, Digg, Flickr (provided by Zafarani & Liu, 2009) and Live-
Journal (provided by Leskovec & Krevl, 2014). Each of the EGONETS datasets consists
of 50 random ego network graphs from each of the 4 social networks where graphs are
annotated against the social network they were extracted from. Here, ego networks are sub-
graphs induced by a vertex’s neighbors. Graphs within each dataset were randomly chosen
from the set of all ego networks but underlie size- and density-specific constraints to ensure
that a simple count of nodes and edges is not sufficient for prediction tasks. The EGON-
ETS-x datasets contain increasingly larger and more dense ego networks with growing
index x. The learning task is to assign each ego network to the network they were extracted
from. Details about the structural properties on these datasets can be found in Table 1.

Table 1 Structural information of graph benchmark datasets

|D|, |C|, and � , denote the number of graphs, number of classes, and maximum degree in a dataset. �0 is the
number of distinct vertex labels. �1,�2,�3 are the amounts of distinct Weisfeiler-Lehman labels for depth
h = 1, 2, 3 , respectively

Dataset |D| |C| ∅|V| ∅|E| ∅|E|
∅|V|

� Number of node labels

�0 �1 �2 �3

IMDB 1000 2 19.8 96.5 4.9 135 1 65 2931 3595
REDDIT 2000 2 429.6 497.8 1.2 3062 1 565 72k 244k
EGONETS-1 200 4 139.0 594.6 4.3 140 1 112 21k 25k
EGONETS-2 200 4 178.6 1445.0 8.1 180 1 140 33k 35k
EGONETS-3 200 4 220.0 2613.5 11.9 203 1 169 42k 43k
EGONETS-4 200 4 259.8 4135.9 15.9 237 1 209 51k 51k

2617Machine Learning (2022) 111:2601–2629

1 3

Synthetic Datasets To systematically evaluate the predictive performance of our kernel
with varying structural complexity, we consider graphs generated by the stochastic block
model (Wang & Wong, 1987). The specific generation of graphs is described by the fol-
lowing process: Let T be some random tree of a predefined size. Create two (non-isomor-
phic) graphs G1,G2 by adding a new edge to T.3 We then generate a set of graphs for each
G ∈ G1,G2 by repeating the following process: Let Ĝ be the empty graph.

(i) For each v ∈ G , add a set of c vertices v1, ..., vc to Ĝ.
(ii) For each v ∈ G , connect pairs {vi, vj} ∈ V(Ĝ) by an edge with probability p.
(iii) For all pairs {vi, uj} ∈ V(Ĝ) with {v, u} ∈ E(G) , connect them by an edge with prob-

ability p, as well.
iv) Connect a number of mx prior unconnected vertex pairs {vi, uj} in Ĝ as noise edges.

The resulting classification task is to assign the generated graph Ĝ to the underlying graph
structure G ∈ G1,G2 . Figure 7 depicts an example of two such generated graphs. All data-
sets considered in the following evaluations were created starting with a random tree of
size 16 which was extended by a single random edge resulting in graphs G1,G2 . For each
classification task we generated 200 random graphs for each G ∈ G1,G2 . The number of
vertices c contained in a block was set to 8 in all experiments. The remaining parameters
were selected as stated in Fig. 9. For each set of parameter choices, we generated 5 datasets
and provide the mean accuracy.

6.2 Real‑world benchmarks

Figure 8 lists the classification accuracies for datasets containing graphs extracted from
online networks. While there are no large discrepancies between our method and the best
performing comparison kernels on datasets IMDB, REDDIT and EGONETS-1 (which all
have an average node-to-edge ratio up to roughly 1 : 4), the R-WL* kernel considerably

(a) (b)

Fig. 7 Graphs generated by slightly different underlying structures (depicted in grey). Each block in the
underlying structure contains 3 vertices. Two vertices are connected by an edge with some probability p if
they belong to the same block or their blocks are connected in the underlying structure (depicted by solid
black lines). Furthermore, both graphs additionally contain mx = 4 noise edges (depicted by dashed red
lines)

3 To ensure that the classification task is non-trivial, we require that G1 and G2 have the same multiset of
vertex degrees.

2618 Machine Learning (2022) 111:2601–2629

1 3

outperforms all others on the three remaining EGONETS datasets which contain signifi-
cantly higher density graphs. The performance gap between the R-WL* kernel and the best
performing competitor becomes increasingly larger with a growing density in the dataset
graphs, leading to an above 20% accuracy difference. To formally evaluate statistical sig-
nificance, we perform two-sample t-tests (with a significance threshold of 0.05) corrected
by the Bonferroni method to make up for the number of tests within each dataset. The
results show that our R-WL* variant significantly outperforms its competitors on the data-
sets REDDIT, EGONETS-2, EGONETS-3 and EGONETS-4. Table 2 shows the running
times to obtain the accuracy values.

It is noteworthy that in case of the EGONETS datasets, already for depth h = 2 nearly
all unfolding trees (i.e. depth-2 unfolding trees) appear only once in the respective dataset.
Thus, the original WL kernel, WWL , and PWL kernels are not able to profit from any
structural information exceeding node degrees, as graphs share almost no i-unfolding trees

IMDB REDDIT EGONETS-1 EGONETS-2 EGONETS-3 EGONETS-4
20

30

40

50

60

70

80

90

A
cc
ur

ac
y
in

%

VE-Hist WL GS SP ODD-STh WWL PWL R-WL*

Fig. 8 Classification accuracies and std. deviations for large network benchmark datasets in % . ODD-STh,
PWL and WWL did not finish within 24 hours on REDDIT

Table 2 Runtimes in seconds

We measured the total time it took to perform a 10-fold cross-validation (as described in Sect. 6.1). “−”
indicates that the computation took longer than 24 hours or halted with an error

Dataset WL GS SP ODD-STh WWL PWL R-WL*

IMDB-B. 26 2438 30 252 4081 174 44
REDDIT-B. 397 4803 46778 − − − 1462
EGONETS-1 21 251 191 888 258 115 393
EGONETS-2 26 267 393 2154 349 186 1275
EGONETS-3 34 287 747 4275 492 275 2739
EGONETS-4 44 301 1152 7638 650 400 4173

2619Machine Learning (2022) 111:2601–2629

1 3

for i ≥ 2 . Interestingly, these kernels still achieve similar results to SP and GS on EGON-
ETS-2/3/4, while VE-Hist is no better than random chance. In contrast, our approach
clearly improves upon this limitation.

We furthermore evaluate our approach on traditional molecular datasets. The results
suggest that our relaxation of the Weisfeiler-Lehman kernel matches but does not further
improve the predictive performance over other classifiers on such datasets which contain
mainly sparse and noise-free graphs. These evaluations can be found in Appendix 4.

Given these two high level experimental results, we conjecture that identifying similar
unfolding trees instead of identical unfolding trees becomes the more advantageous, the
more complex and diverse the graph database becomes. In other words, relaxing a strict
comparison by equality of Weisfeiler-Lehman labels by clustering together similar WL
labels seems to be beneficial when the growth rate of the label sets is high.

6.3 Noise and structural deviation

To validate our claim above, we investigate the effect of noise and structural deviation on
the predictive performance of each kernel. To this end, we vary the values of the param-
eters mx and p of the synthetic datasets (see Sect. 6.1.1). The parameter p governs the
probabilities of edges within and between vertex blocks while mx indicates the number of
randomly added noise edges. Hence, they directly influence the noise and structural devia-
tion of graphs within a class. Due to the construction of the datasets, VE-Hist cannot beat
the accuracy of a random classifier (i.e., 50%) for any choice of parameters and is thus
excluded from this analysis.

Figure 9a investigates the methods’ robustness to noise. Higher values of mx increase
the deviation of graphs within the same class. For mx = 0 (with p = 1.0 fixed) all graphs
in the database have 128 nodes and 2048 edges, and graphs of the same underlying struc-
ture are pairwise isomorphic. Thus, all kernels except GS achieve 100% . While our method
achieves 100% accuracy for all choices of mx , the remaining kernels gradually and signifi-
cantly decrease in predictive performance with increasing values for mx . It is noteworthy

0 10 20 50 100

60%

80%

100%

mx

A
cc
ur

ac
y

(a)

1.0 0.8 0.6 0.4 0.2

p

(b)

WL GS WWL PWL SP ODD-STh R-WL*

Fig. 9 Classification accuracies for synthetic dataset evaluations. a analyzes the influence of different
amounts of noise edges mx (with p = 1.0 fixed) and b shows results obtained for different values of edge
probabilities parameter p (with mx = 0 fixed). Block size c has been set to 8 for all cases. A statistical signif-
icance evaluation using paired t-tests (with significance threshold 0.05) corrected by the Bonferroni method
shows that our method significantly outperforms all others on the experiments performed in a while it is
beaten only by two competitors in b

2620 Machine Learning (2022) 111:2601–2629

1 3

that for the case of 100 noise edges, no competitor kernel but PWL performed significantly
better than random.

Figure 9b analyzes the methods’ ability to identify the underlying structure using dif-
ferent values of the edge probability parameter p (where parameter mx = 0 is fixed). The
lower the value p, the more the dataset graphs within a class deviate from each other, and
the less of the underlying structure is being reflected. While in the trivial case p = 1.0
(where graphs belonging to the same class are pairwise isomorphic) all methods except
GS achieve 100% accuracy, we observe a rapid performance decline for all methods but
R-WL*, SP and ODD-STh for values p < 1.0 . In particular, WL and WWL do not per-
form better than random other than for the trivial case. PWL , which is based on Weisfeiler-
Lehman labels as well, only performs slightly better. While ODD-STh underperformed
in all previous experiments, it seems that its approach to neighborhood similarity is well
suited for this kind of structural deviation.

In summary, it is apparent that kernels based on the rigid equality of Weisfeiler-Lehman
labels are less suited when structural noise distorts the graphs or when the graphs in a class
structurally deviate significantly. Our method mitigates this drawback: Its ability to identify
similar vertex neighborhoods leads to major increases in predictive performance on data-
sets containing noisy and structurally diverse graphs.

7 Concluding remarks

We experimentally demonstrated a drawback of the original Weisfeiler-Lehman graph ker-
nels (Shervashidze et al., 2011) which is caused by their rigid comparison of Weisfeiler-
Lehman labels w.r.t. equality. To overcome this limitation, we introduced a generalization
of Weisfeiler-Lehman graph kernels which allows for a finer similarity measure between
Weisfeiler-Lehman labels. The experimental results reported in this paper clearly show
that the proposed generalization outperforms other state-of-the-art methods on graphs with
structural complexity and edge density beyond the typically considered molecular graphs
of small pharmacological compounds. We stress that although for simplicity we presented
our approach only for the Weisfeiler-Lehman subtree kernel, our generalization is naturally
applicable to all Weisfeiler-Lehman graph kernels.

In recent years, graph neural networks (GNNs) relying on the principle of message pass-
ing have become increasingly prevalent. Much like the Weisfeiler-Lehman label propaga-
tion scheme (Weisfeiler & Lehman, 1968), GNNs compute node feature representations
by aggregating neighborhood information which are subsequently used for learning tasks,
such as node or graph classification. GNNs generally aim at learning node feature represen-
tations which reflect pairwise node similarities in a high-dimensional metric space. While
our approach does not explicitly learn node representations, it shares with GNNs the ingre-
dient of fine grained (dis-)similarity measures comparing nodes and their neighborhoods.

The Weisfeiler-Lehman method was originally designed to decide graph isomorphism
by comparing the WL-label feature sets of graphs. In this context, clustering similar WL-
labels can be perceived as effectively lowering the dimensionality of the feature domain.
That is, in our approach we deliberately decrease the representational power of the respec-
tive embeddings and thus relax the isomorphism test to obtain a more general similarity
measure. In fact, the notion of isomorphism relaxation can also be found in graph neural
networks for which recent studies provide some theoretical results concerning their expres-
siveness which relates to the learnable graph similarity measures. In particular, Xu et al.

2621Machine Learning (2022) 111:2601–2629

1 3

(2019) and Morris et al. (2019) investigate the relationship of GNNs to the Weisfeiler-
Lehman method, showing that their GNNs can be at most as discriminative as the Weis-
feiler-Lehman method in terms of distinguishing non-isomorphic graphs. Xu et al. (2019)
introduce the so-called Graph Isomorphism Networks (GIN) for which they prove that for
certain properties such GINs map any two graphs to the same embedding if and only if the
Weisfeiler-Lehman test considers the graphs to be isomorphic. Errica et al. (2020) further
increases the expressivity of GINs by incorporating edge attributes as well as node or edge
representations across network layers leading to strictly more expressive GNNs. Chen et al.
(2019) establish a formal framework which classifies the representational power of GNNs,
where its most powerful members correspond to collections of permutation-invariant func-
tions which are able to distinguish non-isomorphic graphs. Furthermore, the concept of
relaxing isomorphism to more general similarities can also be be found in Al-Rfou et al.
(2019). In that paper, the authors introduce a neural network encoder architecture which
is used to compute a divergence score between graphs. Conceptually, the more similar two
graphs are, the smaller their divergence becomes. Another possible connection of our ker-
nel to GNNs is the vision of hybrid-approaches which point towards promising methods
that combine aspects of both, kernels and GNNs.

Our results raise several other interesting questions for further research. One open ques-
tion is whether the tree edit distance can directly be used as a ground distance in vertex
matching kernels - similar to approaches such as in Kriege et al. (2016) or Togninalli et al.
(2019) - and, thus, eliminating the need for a hard partitioning of unfolding trees. Unfor-
tunately, straightforward approaches such as replacing the ground distance in the Wasser-
stein Weisfeiler-Lehman kernel (Togninalli et al., 2019) by the tree edit distance does not
yield a positive semi-definite kernel in general. However, there has been comprehensive
research addressing the problem of dealing with indefinite kernels. For instance, indefinite
kernel matrices may be converted to positive definite ones using spectrum transformation
approaches, which, e.g., aim at flipping all negative eigenvalues to zero (Wu et al., 2005)
or alter the matrix’s diagonal by adding a positive term (Roth et al., 2003). Furthermore,
we note that our node distance function SDTED is not restricted to be applied in the context
of graph kernels. In fact, using SDTED as Wasserstein ground distance in order to compute
distances between graphs, directly allows the application of other (dis-)similarity-based
classifiers such as k-nearest-neighbor approaches.

Another particularly important research direction is to study other meaningful similari-
ties between labels that allow for a faster calculation of minimum cost perfect bipartite
matchings (or Wasserstein distances). As the cost function � on the original vertex labels
can be defined by an arbitrary metric, the application of our approach to attributed graphs
is another natural research question.

Appendix 1 Positive semi‑definiteness

Claim 1 The relaxed Weisfeiler-Lehman kernel kh
R-WL

(G,G�) defined as

is positive semi-definite.

Proof We first show that the term

∑

i=0,..,h

∑

�∈�i

∑

v∈V

∑

v�∈ V �

�(�(Ti(G, v)), �(Ti(G�, v�)))

2622 Machine Learning (2022) 111:2601–2629

1 3

can be expressed as an inner product. Let � ∶ T (i)
→ [k] be some partitioning on the

i-unfolding trees T (i) which includes all i-unfolding trees appearing in G and G′ . For some
i-unfolding tree T, ��(T) denotes the vector with elements indexed by the k partitions of � .
At index corresponding to the partition that T belongs to (i.e. index �(T)) set entry to 1,
and to 0 everywhere else. Let � (G) be the sum over such vectors of i-unfolding trees of
all vertices in graph G, i.e., � (G) =

∑
v∈V(G) ��(Ti(G,v)) . Then, one can check the following

equivalence:

As the sum of kernels is also a kernel, it follows that the Relaxed Weisfeiler-Lehman kernel
kh
R-WL

(G,G�) is positive semi-definite. ◻

Appendix 2 Clustering of unfolding trees (details)

In this section we provide a detailed and more formal description of the Wasserstein k-means
algorithm applied to unfolding trees.

Unfolding tree vectors

We first show how to represent unfolding trees by real-valued vectors. Recall that the struc-
ture and depth preserving tree edit distance is calculated as the sum of

(A) the distance between the roots and
(B) the minimum cost of the perfect bipartite matching between child trees below these

roots.

We therefore represent a depth-h unfolding tree T as a pair � (T) = (�r(T),�c(T)) , where
the vectors �r(T) and �c(T) represent the root node’s label �(r(T)) and the set of (h − 1)

-unfolding child trees F(r(T)), respectively.
More precisely, let 𝛴⊥ = (l1,… , lp,⊥) be the ordered set of all original vertex labels

appearing in the graph dataset G and blank symbol ⊥ . Then the root node label of an
unfolding tree T is represented by the vector �r(T) = (x1,… , xp, x⊥) , where

Furthermore, let T (h−1) = (T
(h−1)

1
,… , T (h−1)

q
) be the ordered set of all pairwise non-isomor-

phic (h − 1)-unfolding trees in G . Then, the child trees F(r(T)) below the root of T are rep-
resented by the vector �c(T) = (x1, ..., xq, xq+1) with

∑

v∈V

∑

v�∈ V �

�(�(Ti(G, v)), �(Ti(G�, v�)))

⟨� (G),� (G�)⟩ =
�

v∈V

�

v�∈ V �

�(�(Ti(G, v)), �(Ti(G�, v�)))

xi =

{
1 if i ∈ [p] and �(r(T)) = li
0 o/w .

xi =

{
|{T � ∈ F(r(T)) ∶ T � ≡ T

(h−1)

i
}| if i ∈ [q]

2d − deg(r(T)) o/w

2623Machine Learning (2022) 111:2601–2629

1 3

where d is the maximum vertex degree in G.

The Wasserstein distance over unfolding tree vectors

We now show that the terms (A) and (B) above correspond to Wasserstein distances
between root and between child vectors, respectively. In order to properly formulate the
Wasserstein distances, we require cost matrices containing pairwise distances between
labels of root nodes (i.e., elements of 𝛴⊥) and pairwise distances between child trees (i.e.,
(h − 1)-unfolding trees).

More precisely, for the alphabet � with |�| = p , let Mr ∈ ℝ
(p+1)×(p+1) be the distance

matrix between labels and blank symbol ⊥ = lp+1 according to 𝛾 ∶ 𝛴⊥ × 𝛴⊥
→ ℝ , i.e.:

The pairwise distance matrix over the set T (h−1) of (h − 1)-unfolding trees together with the
empty graph T⊥ = T

(h−1)

q+1
 is given by

where q = |T (h−1)|.
Then, for two depth-h unfolding trees T and T ′ , the Wasserstein distance between their

roots is equal to WMr (�r(T),�r(T
�)) . Furthermore, the calculation of the minimum cost

perfect bipartite matching between the sets of child trees below these roots can be reduced
to computing the Wasserstein distance between vectors �c(T) and �c(T

�) using the follow-
ing lemma which follows from the integral flow theorem.

Lemma 1 For x, x� ∈ ℕ
d there exists a transportation matrix T ∈ T (x, x�) with T ∈ ℕ

d×d
such that ⟨T ,C⟩ = W C(x, x�) for any cost matrix C ∈ ℝ

d×d.

This lemma implies that (B) above is equivalent to WMc (�c(T),�c(T
�)) . Putting all

together we have:

Unfolding tree barycenters

We now show how to represent and calculate the barycenters of sets of unfolding trees
for Wasserstein k-means. A barycenter of a set of unfolding tree vectors is a point which
minimizes the sum of distances to all vectors in the set. Similarly to unfolding tree vectors
defined in Sect. 4, the barycenter is a pair (ℝp+1,ℝq+1) . While a barycenter, in general,
does not correspond to an existing unfolding tree, the Wasserstein distance between unfold-
ing tree and center vectors can be computed nonetheless.

Formally, for a set of depth-h unfolding trees S ⊆ T (h) , consider the set

Mr = (mij)i,j∈[p+1] with mij = �(li, lj).

Mc = (mij)i,j∈[q+1] with mij = SDTED(T
(h−1)

i
, T

(h−1)

j
),

SDTED(T , T �)

= WMr (�r(T),�r(T
�)) +WMc (�c(T),�c(T

�)).

𝕍
(h) = {(Vr,Vc) ∈ ℝ

p+1 ×ℝ
q+1 ∶ ||Vr||1 = 1 and ||Vc||1 = 2d}.

2624 Machine Learning (2022) 111:2601–2629

1 3

Note that � (T) ∈ �
(h) for all T ∈ T (h) . For any two X, Y ∈ �

(h) , we define their Wasserstein
distance by

Using these notions, for the barycenter � ∈ �
(h) minimizing the sum of Wasserstein dis-

tances to depth-h unfolding trees in S we have

Thus, the barycenter � is the pair (�r,�c).

The Wasserstein k‑means algorithm for unfolding trees

Using the above definitions, we are ready to formulate the Wasserstein k-means clus-
tering algorithm for unfolding trees in the form of Lloyd’s algorithm (Lloyd, 1982):

1. Initialization: Choose a k-subset {𝜇1, ...,𝜇k} ⊆ {� (T) ∶ T ∈ T (h)}

2. Assignment: Ci = {T ∈ T (h) ∶ W
Mr

Mc
(� (T),�i) ≤ W

Mr

Mc
(� (T),�j),∀j ∈ [k]}

3. Update: �i = argmin
�∈� (h)

∑
T∈Ci

W
Mr

Mc
(� (T),�)

Steps 2 and 3 are repeated until clusters do not change anymore, i.e., the algorithm
converges, or a predefined number of iterations has been reached.

Figure 10 visualizes the concept of clustering unfolding trees using Wasserstein
k-means.

W
Mr

Mc
(X, Y) = WMr (Xr, Yr) +WMc (Xc, Yc).

min
�

∑

T∈S

W
Mr

Mc
(� (T),�)

= min
�r

∑

T∈S

WMr (�r(T),�r) +min
�c

∑

T∈S

WMc (�c(T),�c)

V(T1) :

V(T2) :

V(T3) :

V(T4) :

V(T5) :

T1 :

T2 :

T3 :

T4 :

T5 : µ2

µ1

Fig. 10 Conceptual visualization of the mapping of 2-unfolding trees into � (2) space. Center points �1,�2
minimize the sum of distances (defined by WM

r

M
c

) to all points in the clusters (depicted blue). Thus, the cor-
responding unfolding trees within a cluster have pairwise small SDTED

2625Machine Learning (2022) 111:2601–2629

1 3

Appendix 3 Complexity analysis

The computation of clusters over a set of i-unfolding trees T (i) requires the respective dis-
tance matrix Mc . As |T (i)| is bounded by the number of vertices N in graph dataset G for all
values i, Mc can be computed by O(N2) invocations of the Wasserstein distance function.
Employing a linear programming solution yields a complexity of Õ(N3) for each such invo-
cation, which can however be improved using approximation methods (Cuturi, 2013). We
note that generally |T (i)| ≪ N for relatively small i, which immensely lowers the complex-
ity for the calculation of Mc as well as Wasserstein distance computations in practice.

Let us consider a single iteration of the k-means Wasserstein algorithm. The assign-
ment step of the above algorithm requires kN invocations of the Wasserstein distance func-
tion. To compute the set of cluster centers, we consider the Iterative Bregman Projections
algorithm which provides an �-approximation yielding an overall complexity of Õ(k(2d)

2N3

2𝜖
)

(Kroshnin et al., 2019) in the update step.

Appendix 4 Experimental evaluation (cont.)

In this section we provide additional experimental evaluations.
Datasets. We include several molecular benchmark datasets (Morris et al., 2020) which

contain small graphs of fairly simple structure, i.e., they have roughly as many nodes as
edges and a small maximum degree. The datasets are annotated for binary target proper-
ties. Detailed structural information on these graphs can be found in Table 3.

Evaluation. Figure 11 shows classification accuracies for real-world molecular data-
sets. On all datasets, our approach is in close range to the best performing kernels. Only,
for NCI1 there is a noticeable performance gap of about 4% . To statistically evaluate the
results, we performed two-sample t-tests (with a significance threshold of 0.05) corrected
by the Bonferroni method to make up for the number of tests within each dataset. The
results show that for none of the datasets there is a method that significantly outperforms
all others.

The overall results suggest that a relaxation of the Weisfeiler-Lehman kernel is not
advantageous when applied to these simple molecular graphs. This may be explained by

Table 3 Structural information of molecular graph benchmark datasets |D|, |C|, and � , denote the number
of graphs, number of classes, and maximum degree in a dataset. �0 is the number of distinct vertex labels.
�1,�2,�3 are the amounts of distinct Weisfeiler-Lehman labels for depth h = 1, 2, 3 , respectively

Dataset |D| |C| ∅|V| ∅|E| ∅|E|
∅|V|

� Number of node labels

�0 �1 �2 �3

BZR 405 2 35.8 38.4 1.1 4 10 89 677 2058
COX2 467 2 41.2 43.4 1.1 4 8 71 537 1610
DHFR 756 2 42.4 44.5 1.0 4 9 71 630 2478
MUTAG 188 2 17.9 19.8 1.1 4 7 33 174 572
NCI1 4110 2 29.9 32.3 1.1 4 37 292 4058 23k

2626 Machine Learning (2022) 111:2601–2629

1 3

the assumption that structurally similar unfolding trees (corresponding to e.g. functional
groups) can have completely opposing chemical properties. Clustering might thus even be
disadvantageous for this kind of data. It is noteworthy that except for the datasets DHFR
and NCI1, the simple histogram baseline kernel (VE-Hist) is on par with the best perform-
ing kernels.

Investigation of the depth parameter h

Figure 12 investigates the influence of the depth parameter h on the predictive performance
of our kernel variant R-WL* for datasets IMDB-B, REDDIT-B and the EGONETS-1 to
EGONETS-4. The results show a significant increase from h = 1 to h = 2 , while in the
majority of considered datasets, the predictive performance does not notably change any
further for values h > 2.

BZR COX2 DHFR MUTAG NCI1
50

60

70

80

90

100
A
cc
ur

ac
y

VE-Hist WL GS SP ODD-STh WWL PWL R-WL*

Fig. 11 Classification accuracies and std. deviations for molecular datasets in %

2627Machine Learning (2022) 111:2601–2629

1 3

Acknowledgements This material was produced within the Competence Center for Machine Learning
Rhine-Ruhr (https:// www. ml2r. de) which is funded by the Federal Ministry of Education and Research of
Germany (Grant No. 01|S18038C). The authors gratefully acknowledge this support.

Author contributions All authors contributed to the submitted manuscript. Material preparation, data col-
lection and analysis were performed by Till Schulz, Pascal Welke and Tamás Horváth. The first draft of the
manuscript was written by Till Schulz and all authors commented on previous versions of the manuscript.
All authors read and approved the final manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL. This material was produced within
the Competence Center for Machine Learning Rhine-Ruhr (https:// www. ml2r. de) which is funded by the
Federal Ministry of Education and Research of Germany (Grant No. 01|S18038C). The authors gratefully
acknowledge this support.

Availability of data and material All material on the performed experiments including datasets are available
online. The link https:// github. com/ mlai- bonn/ GenWL can be found in the article.

Code availability The code used in experiments is available online. A references https:// github. com/ mlai-
bonn/ GenWL can be found in the article.

1 2 3 4 5

65

70

75

h

A
cc
ur

ac
y
in

%

IMDB-BINARY

1 2 3 4 5

75

80

85

h

A
cc
ur

ac
y
in

%

REDDIT-BINARY

1 2 3 4 5

60

70

h

A
cc
ur

ac
y
in

%

EGO-1

1 2 3 4 5
40

50

60

70

h

A
cc
ur

ac
y
in

%
EGO-2

1 2 3 4 5
40

50

60

70

h

A
cc
ur

ac
y
in

%

EGO-3

1 2 3 4 5

50

60

70

80

h

A
cc
ur

ac
y
in

%

EGO-4

Fig. 12 Predictive performance of the R-WL* kernel for different choices of parameter h

https://www.ml2r.de
https://www.ml2r.de
https://github.com/mlai-bonn/GenWL
https://github.com/mlai-bonn/GenWL
https://github.com/mlai-bonn/GenWL

2628 Machine Learning (2022) 111:2601–2629

1 3

Declarations

Conflict of interest This study was funded by Competence Center for Machine Learning Rhine-Ruhr (see
above). The authors have no other financial or proprietary interests in any material discussed in this article.

 Ethical approval The authors assure that all potential conflicts of interest have been disclosed above. All
research performed in this article was done in accordance with the ethical standards of the Springer ethics
code of conduct.

 Consent to participate All listed authors have agreed to submitting the attached article to the Machine
Learning Journal.

 Consent for publication Not applicable. (The authors assure that no figures, tables and text passages have
been obtained from third party authors.)

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Al-Rfou, R., Perozzi, B., & Zelle, D. (2019). DDGK: learning graph representations for deep divergence
graph kernels. In: The World Wide Web Conference 2019, ACM, pp. 37–48.

Babai, L., & Kucera, L. (1979). Graph canonization in linear average time. In: FOCS, pp. 39–46.
Bille, P. (2005). A survey on tree edit distance and related problems. Theoretical Computer Science, 337(1–

3), 217–239.
Borgwardt, K. M., & Kriegel, H. P. (2005). Shortest-path kernels on graphs. In: ICDM ’05, pp 74 — 81.
Chen, Z., Villar, S., Chen, L., & Bruna, J. (2019). On the equivalence between graph isomorphism test-

ing and function approximation with gnns. Advances in Neural Information Processing Systems, 2019,
15868–15876.

Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport. In: Advances in Neural
Information Processing Systems, pp. 2292–2300.

Cuturi, M., & Doucet, A. (2014). Fast computation of wasserstein barycenters. In: International Conference
on Machine Learning, pp. 685–693.

Da San Martino, G., Navarin, N., & Sperduti, A. (2012). A tree-based kernel for graphs. In: SIAM Interna-
tional Conference on Data Mining, pp. 975–986.

Dell, H., Grohe, M., & Rattan, G. (2018). Lovász meets Weisfeiler and Leman. In: International Collo-
quium on Automata, Languages and Programming, pp. 40:1–40:14.

Errica, F., Bacciu, D., & Micheli, A. (2020). Theoretically expressive and edge-aware graph learning.
ESANN, 2020, 175–180.

Gärtner, T., Flach, P., & Wrobel, S. (2003). On graph kernels: Hardness results and efficient alternatives. In:
COLT/Kernel, pp. 129–143.

Haussler, D. (1999). Convolution kernels on discrete structures. Technical report, Department of Computer
Science, University of California at Santa Cruz.

Irpino, A., Verde, R., & de Carvalho, F. A. T. (2014). Dynamic clustering of histogram data based on adap-
tive squared Wasserstein distances. Expert Systems with Applications, 41(7), 3351–3366.

Kriege, N. M., Giscard, P., & Wilson, R. C. (2016). On valid optimal assignment kernels and applications to
graph classification. In: Advances in Neural Information Processing Systems, pp. 1615–1623.

Kriege, N. M., Johansson, F. D., & Morris, C. (2020). A survey on graph kernels. Applied Network Science,
5(1), 6.

http://creativecommons.org/licenses/by/4.0/

2629Machine Learning (2022) 111:2601–2629

1 3

Kroshnin, A., Tupitsa, N., Dvinskikh, D., Dvurechensky, P., Gasnikov, A., & Uribe, C. (2019). On the com-
plexity of approximating Wasserstein barycenters. Proceedings of the International Conference on
Machine Learning, 97, 3530–3540.

Leskovec, J., & Krevl, A. (2014). SNAP Datasets: Stanford large network dataset collection. http:// snap.
stanf ord. edu/ data

Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2),
129–137. https:// doi. org/ 10. 1109/ TIT. 1982. 10564 89.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., & Grohe, M. (2019). Weisfeiler
and leman go neural: Higher-order graph neural networks. Proceedings of the AAAI Conference on
Artificial Intelligence, 2019, 4602–4609.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel, P., & Neumann, M. (2020). Tudataset: A collec-
tion of benchmark datasets for learning with graphs. In: GRL+@ICML, arXiv: 2007. 08663.

Rieck, B., Bock, C., & Borgwardt, K. (2019). A persistent Weisfeiler-Lehman procedure for graph classifi-
cation. In: International Conference on Machine Learning, pp. 5448–5458.

Roth, V., Laub, J., Kawanabe, M., & Buhmann, J. (2003). Optimal cluster preserving embedding of nonmet-
ric proximity data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12), 1540–
1551. https:// doi. org/ 10. 1109/ TPAMI. 2003. 12511 47.

Shervashidze, N., Vishwanathan, S. V. N., Petri, T., Mehlhorn, K., & Borgwardt, K. M. (2009). Efficient
graphlet kernels for large graph comparison. In: Artificial Intelligence and Statistics, pp. 488–495.

Shervashidze, N., Schweitzer, P., Van Leeuwen, E. J., Mehlhorn, K., & Borgwardt, K. M. (2011). Weis-
feiler-Lehman graph kernels. Journal of Machine Learning Research, 12, 2539–2561.

Siglidis, G., Nikolentzos, G., Limnios, S., Giatsidis, C., Skianis, K., & Vazirgiannis, M. (2018). GraKel:
A graph kernel library in Python. arXiv preprint arXiv: 1806. 02193. https:// github. com/ ysig/ GraKeL.

Smola, A. J., & Vishwanathan, S. (2003). Fast kernels for string and tree matching. In: Kernel Methods in
Computational Biology, pp. 585–592.

Togninalli, M., Ghisu, E., Llinares-López, F., Rieck, B., & Borgwardt, K. (2019). Wasserstein Weisfeiler-
Lehman graph kernels. In: Advances in Neural Information Processing Systems, pp. 6439–6449.

Wang, Y. J., & Wong, G. Y. (1987). Stochastic blockmodels for directed graphs. Journal of the American
Statistical Association, 82(397), 8–19.

Weisfeiler, B., & Lehman, A. A. (1968). A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Technicheskaya Informatsia, 2(9).

Wu, G., Chang, E. Y., & Zhang, Z. (2005). An analysis of transformation on non-positive semidefinite simi-
larity matrix for kernel machines. In: Proceedings of the 22nd International Conference on Machine
Learning.

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How powerful are graph neural networks? In: ICLR
2019.

Zafarani, R., & Liu, H. (2009).Social computing data repository at ASU. http:// socia lcomp uting. asu. edu,
accessed: 2019-06-25, offline at the time of submission.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1109/TIT.1982.1056489
http://arxiv.org/abs/2007.08663
https://doi.org/10.1109/TPAMI.2003.1251147
http://arxiv.org/abs/1806.02193
https://github.com/ysig/GraKeL
http://socialcomputing.asu.edu

	A generalized Weisfeiler-Lehman graph kernel
	Abstract
	1 Introduction
	2 Preliminaries
	3 The Weisfeiler-Lehman tree edit distance
	3.1 The Weisfeiler-Lehman method
	3.2 The structure and depth preserving tree edit distance
	3.3 The unfolding tree edit distance algorithm

	4 The generalized Weisfeiler-Lehman subtree kernel
	4.1 Wasserstein Distance on Unfolding Tree Vectors
	4.2 Unfolding Tree Barycenters
	4.3 The Wasserstein k-Means Algorithm for Unfolding Trees
	4.4 A faster kernel variant

	5 Related work
	6 Empirical evaluation
	6.1 Experimental setup
	6.1.1 Datasets

	6.2 Real-world benchmarks
	6.3 Noise and structural deviation

	7 Concluding remarks
	Acknowledgements
	References

