
Expectation Complete Graph Representations
Using Graph Homomorphisms

Maximilian Thiessen∗

TU Wien, Austria
maximilian.thiessen@tuwien.ac.at

Pascal Welke*

University of Bonn, Germany
welke@cs.uni-bonn.de

Thomas Gärtner
TU Wien, Austria

thomas.gaertner@tuwien.ac.at

Abstract
We propose and study a practical graph embedding that in expectation is able to
distinguish all non-isomorphic graphs and can be computed in polynomial time.
The embedding is based on Lovász’ characterisation of graph isomorphism through
an infinite dimensional vector of homomorphism counts. Recent work has studied
the expressiveness of graph embeddings by comparing their ability to distinguish
graphs to that of the Weisfeiler-Leman hierarchy. While previous methods have
either limited expressiveness or are computationally impractical, we devise efficient
sampling-based alternatives that are maximally expressive in expectation. We
empirically evaluate our proposed embeddings and show competitive results on
several benchmark graph learning tasks.

1 Introduction
We study novel efficient and expressive graph embeddings based on Lovász’ characterisation of
graph isomorphism through homomorphism counts. While most practical graph embeddings drop
the property of completeness, that is, the ability to distinguish all non-isomorphic graphs, in favour of
runtime, we devise efficient embeddings that retain completeness in expectation. To achieve that, we
sample pattern graphs in a particular way, simultaneously guaranteeing completeness and polynomial
runtime in expectation. We discuss related work, in particular the relationship to the k-dimensional
Weisfeiler Leman isomorphism test, and show first results on benchmark datasets.

While subgraph counts are also a reasonable choice for expectation complete graph embeddings,
they have multiple drawbacks compared to homomorphism counts. Most importantly, from a
computational perspective, computing subgraph counts even for simple graphs such as trees or paths
is NP-hard [Alon et al., 1995; Marx and Pilipczuk, 2014], while we can compute homomorphism
counts efficiently [Díaz et al., 2002] as long as the pattern graphs have small treewidth, a measure of
‘tree-likeness’. In particular, all known exact algorithms for subgraph isomorphism have a runtime
exponentially in the pattern size or the maximum degree of the pattern even for small treewidth —
one of the main reasons why the graphlet kernel [Shervashidze et al., 2009] and similar fixed pattern
based approaches [Bouritsas et al., 2022] only count subgraphs up to size around 5.

Probably most important from a conceptual perspective is the relationship of homomorphism counts
to the cut distance [Borgs et al., 2006; Lovász, 2012]. The cut distance is a well-studied and important
distance on graphs that captures global structural but also sampling-based local information. It is well
known that the distance given by (potentially approximated and sampled) homomorphism counts is
close to the cut distance and hence has similar favourable properties. The cut distance, and hence,

∗Equal contribution

NeurIPS 2022 New Frontiers in Graph Learning Workshop (NeurIPS GLFrontiers 2022).

homomorphism counts, capture the behaviour of all permutation-invariant functions on graphs. For
an ongoing discussion about the importance of the cut distance and homomorphism counts in the
context of graph learning, see Dell et al. [2018], Grohe [2020], and Hoang and Maehara [2020].

Completeness in expectation essentially implies one powerful fact that no deterministic embedding
with bounded expressiveness can guarantee: repetition will make the embedding more expressive
eventually. If the graph embedding is complete in expectation it is guaranteed that sampling more
patterns will eventually increase its expressiveness.

2 Complete Graph Embeddings
The graph isomorphism problem is a classical problem in graph theory and its computational
complexity is a major open problem [Babai, 2016]. Following the classical result of Lovász [1967],
two graphs are isomorphic if and only if they have the same infinite dimensional homomorphism
count vectors. This provides a powerful graph embedding for graph classification tasks [Barceló
et al., 2021; Dell et al., 2018; Hoang and Maehara, 2020].

A graph G = (V (G), E(G)) consists of a set V (G) of vertices and a set E(G) = {e ⊆ V | |e| = 2}
of edges. The size of a graph is the number of its vertices. In the following F and G denote
graphs, where F represents a pattern graph and G a graph in our training set. A homomorphism
Φ : V (F) → V (G) is a map that respects edges, i.e. {v, w} ∈ E(F) ⇒ {Φ(v),Φ(w)} ∈ E(G). An
isomorphism is a bijective homomorphism whose inverse is also a homomorphism. We say that a
distribution D over a countable domain X has full support if each x ∈ X has nonzero probability.

Let Gn be the set of all finite graphs of size at most n and let hom(F,G) denote the number of
homomorphisms of F to G for arbitrarily graphs and φn(G) = hom(Gn, G) = (hom(F,G))F∈Gn

denote the Lovász vector of G for Gn. Lovász [1967] proved the following classical theorem.

Theorem 1 (Lovász [1967]2). Two arbitrary graphs G,H ∈ Gn are isomorphic iff φn(G) = φn(H).

We can define a simple kernel on Gn with the canonical inner product using φn.

Definition 2 (Complete Lovász kernel). Let kφn(G,H) = ⟨φn(G), φn(H)⟩.
Note that kφn is a complete graph kernel [Gärtner et al., 2003] on Gn, i.e., kφn can be used to
distinguish non-isomorphic graphs of size n. Similarly, we define complete graph embeddings.

Definition 3. Let φ : G → V be a permutation-invariant graph embedding from a family of graphs G
to a vector space V . We call φ complete (on G) if φ(G) ̸= φ(H) for all non-isomorphic G,H ∈ G.

When studying graph embeddings and graph kernels we face the tradeoff between efficiency and
expressiveness: complete graph representations are unlikely to be computable in polynomial time
[Gärtner et al., 2003] and hence most practical graph representations drop completeness in favour
of polynomial runtime. In our work, we study random graph representations. While dropping
completeness and being efficiently computable, this allows us to keep a slightly weaker yet desirable
property: completeness in expectation.

Definition 4. A graph embedding φX , which depends on a random variable X , is complete in
expectation if the graph embedding given by the expectation, EX [φX(·)], is complete.

Similarly, we say that the corresponding kernel kX(G,H) = ⟨φX(G), φX(H)⟩ is complete in
expectation. We can use Lovász’ isomorphism theorem to devise graph embeddings that are complete
in expectation. For that let eF ∈ RGn be the ‘F th’ standard basis unit-vector of Gn.

Theorem 5. Let D be a distribution on Gn with full support and G ∈ Gn. Then the graph embedding
φF (G) = hom(F,G)eF with F ∼ D and the corresponding kernel k are complete in expectation.

2.1 Expectation Complete Embeddings and Kernels on G∞

In this section, we generalise the previous result to the set of all finite graphs G∞. Theorem 1 holds
for G,H ∈ G∞ and the mapping φ∞ that maps each G ∈ G∞ to an infinite-dimensional vector.
The resulting vector space, however, is not a Hilbert space with the usual inner product. To see this,
consider any graph G that has at least one edge. Then hom(Pn, G) ≥ 2 for every path Pn of length
n ∈ N. Thus, the inner product ⟨φ∞(G), φ∞(G)⟩ is not finite.

2see also the proof of Theorem 5.29 and the comments below in Lovász [2012].

2

To define a kernel on G∞ without fixing a maximum size of graphs, i.e., restricting to Gn for some
n ∈ N, we define the countable-dimensional vector φ∞(G) =

(
hom|V (G)|(F,G)

)
F∈G∞

where

hom|V (G)|(F,G) =

{
hom(F,G) if |V (F)| ≤ |V (G)| ,
0 if |V (F)| > |V (G)| .

That is, φ∞(G) is the projection of φ∞(G) to the subspace that gives us the homomorphism counts
for all graphs of size at most of G. Note that this is a well-defined map of graphs to a subspace of the
ℓ2 space, i.e., sequences (xi)i over R with

∑
i |xi|2 < ∞. Hence, the kernel given by the canonical

inner product k∞(G,H) = ⟨φ∞(G), φ∞(H)⟩ is finite and positive semi-definite. Note that we
can rewrite k∞(G,H) = kmin(G,H) = ⟨φn′(G), φn′(H)⟩ where n′ = min{|V (G)|, |V (H)|}.
While the first hunch might be to count patterns up to max{|V (G)|, |V (H)|}, this is not necessary to
guarantee completeness. Furthermore, the corresponding map kmax is not even positive semi-definite.

Lemma 6. kmin is a complete kernel on G∞.

Given a sample of graphs S, we note that for n = maxG∈S |V (G)| we only need to consider patterns
up to size n.3 As the number of graphs of a given size n are superexponential it is impractical to
compute all such counts. Hence, we propose to resort to sampling.

Theorem 7. Let D be a distribution on G∞ with full support and G ∈ G∞. Then φF (G) =
hom|V (G)|(F,G)eF with F ∼ D and the corresponding kernel are complete in expectation.

2.2 Sampling multiple patterns
Sampling just one pattern F will not result in a practical graph embedding. Thus, we propose to
sample ℓ patterns F1, . . . , Fℓ ∼ D i.i.d. and construct the embedding φℓ(G) ∈ Nℓ

0 with (φℓ(G))i =
hom(Fi, G) if |V (Fi)| ≤ |V (G)| and 0 otherwise for all i ∈ [ℓ]. For the dot product it holds that
φℓ(G)Tφℓ(H) =

∑ℓ
i=1⟨φFi

(G), φFi
(H)⟩ as long as we do not sample patterns twice.4

3 Computing Embeddings in Expected Polynomial Time
A graph embedding that is complete in expectation must be efficiently computable to be practical.
In this section, we describe our main result achieving polynomial runtime in expectation. The best
known algorithms [Díaz et al., 2002] to exactly compute hom(F,G) take time

O(|V (F)||V (G)|tw(F)+1) (1)

where tw(F) is the treewidth of the pattern graph H . Thus, a straightforward sampling strategy to
achieve polynomial runtime in expectation is to give decreasing probability mass to patterns with
higher treewidth. Unfortunately, in the case of G∞, this is not possible.

Proposition 8. There exists no distribution D with full support on G∞ such that the expected runtime
of Eq. (1) becomes polynomial in |V (G)| for all G ∈ G∞.

To resolve this issue we have to take the size of the largest graph in our sample into account. For a
given sample S ⊆ Gn of graphs, where n is the maximum number of vertices in S, we can construct
simple distributions achieving polynomial time in expectation.

Theorem 9. There exists a distribution D such that computing the expectation complete graph
embedding φX(G) takes polynomial time in |V (G)| in expectation for all G ∈ Gn.

Proof. Sketch. We first draw a treewidth upper bound k from an appropriate distribution. For example,
a Poisson distribution with parameter λ = O(logn/n) is sufficient. We have to ensure that each
possible graph with treewidth up to k gets a nonzero probability of being drawn. For that we first
draw a k-tree, a maximal graph of treewidth k, and then take a random subgraph of it.

Note that we do not require that the patterns are sampled uniformly at random. It merely suffices
that each pattern has a nonzero probability of being drawn. To satisfy a runtime of O(|V (G)|d+1) in
expectation, for example, a Poisson distribution with λ ≤ 1+d logn

n is sufficient.

3Actually, it is sufficient to go up to the size of the second largest graph.
4Note that it does not affect the expressiveness results if we sample a pattern multiple times.

3

Table 1: Cross-validation accuracies on benchmark datasets

method MUTAG IMDB-BIN IMDB-MULTI PAULUS25 CSL

GHC-tree(6) 89.28 ± 8.26 72.10 ± 2.62 48.60 ± 4.40 7.14 ± 0.00 10.00 ± 0.00
GHC-cycle(8) 87.81 ± 7.46 70.93 ± 4.54 47.41 ± 3.67 7.14 ± 0.00 100.00 ± 0.00
GNTK 89.46 ± 7.03 75.61 ± 3.98 51.91 ± 3.56 7.14 ± 0.00 10.00 ± 0.00
GIN 89.40 ± 5.60 70.70 ± 1.10 43.20 ± 2.00 7.14 ± 0.00 10.00 ± 0.00
WL-kernel 90.4 ± 5.7 73.12 ± 0.4 - 7.14 ± 0.00 10.00 ± 0.00

ours (SVM) 87.94 ± 0.01 70.37 ± 0.01 47.34 ± 0.01 100.00 ± 0.00 37.33 ± 0.1
ours (MLP) 88.55 ± 0.01 70.81 ± 0.01 48.29 ± 0.01 40.524 ± 0.01 13.27± 0.01

4 Related Work
The k-dimensional Weisfeiler-Leman (WL) test5 [Cai et al., 1992] and the Lovász vector restricted to
patterns up to treewidth k are equally expressive [Dell et al., 2018; Dvořák, 2010]. We propose an
efficiently computable embedding matching the expressiveness of k-WL, and hence also MPNNs and
k-GNNs [Morris et al., 2019; Xu et al., 2019], in expectation, see Appendix D.

Dell et al. [2018] proposed a complete graph kernel based on homomorphism counts related to our
kmin kernel. Instead of implicitly restricting the embedding to only a finite number of patterns, as we
do, they weigh the homomorphism counts such that the inner product defined on the whole Lovász
vectors converges. However, Dell et al. [2018] do not discuss how to compute their kernel and so, our
approach can be seen as an efficient sampling-based alternative to their theoretical weighted kernel.

Using graph homomorphism counts as a feature embedding for graph learning tasks was proposed
by Hoang and Maehara [2020] and Kühner [2021]. Hoang and Maehara [2020] discuss various
aspects of homomorphism counts important for learning tasks, in particular, universality aspects
and their power to capture certain properties of graphs, such as bipartiteness. Instead of relying on
sampling patterns, which we use to guarantee expectation in completeness, they propose to use a fixed
number of small pattern graphs. This limits the practical usage of their approach due to computational
complexity reasons. In their experiments the authors only use tree (GHC-tree(6)) and cycle patterns
(GHC-cycle(8)) up to size 6 and 8, respectively, whereas we allow patterns of arbitrary size and
treewidth, guaranteeing polynomial runtime in expectation. Simiarly to Hoang and Maehara [2020],
we use the computed embeddings as features for a kernel SVM (with RBF kernel) and an MLP.

Instead of embedding the whole graph into a vector of homomorphism counts, Barceló et al. [2021]
proposed to use rooted homomorphism counts as node features in conjunction with a graph neural
network (GNN). They discuss the required patterns to be as or more expressive than the k-WL test.
We achieve this in expectation when selecting an appropriate sampling distribution, see Appendix D.

Wu et al. [2019] adapted random Fourier features [Rahimi and Recht, 2007] to graphs and proposed
a sampling-based variant of the global alignment graph kernel. Similar sampling-based ideas were
discussed before for the graphlet kernel [Shervashidze et al., 2009] and frequent-subtree kernels
[Welke et al., 2015]. All three papers do not discuss expressiveness aspects, however.

5 Experiments
We performed some preliminary experiments on some benchmark datasets. To this end, we sample a
fixed number ℓ = 30 of patterns as described in Appendix A and compute the sampled min kernel as
described in Section 3. Table 1 shows averaged accuracies of SVM and MLP classifiers trained on
our feature sets. We follow the experimental design of Hoang and Maehara [2020] and compare to
their published results. Even with as little as 30 features, the results of our approach are comparable
to the competitors on real world datasets. Furthermore, it is interesting to note that a SVM with
RBF kernel and our features performs perfectly on the PAULUS25 dataset, i.e., it is able to decide
isomorphism for the strongly regular graphs in this dataset. It also shows good performance, although
with high deviation, on the CSL dataset, where only the method specifically designed for this dataset,
GHC-cycle, performs well. We also included GNTK [Du et al., 2019], GIN [Xu et al., 2019], and the
WL-kernel [Shervashidze et al., 2011]. Baselines’ accuracies are from Hoang and Maehara [2020].

5Note that this refers to the folklore k-WL test, also called k-FWL.

4

6 Conclusion
As future work, we will investigate approximate counts to make our implementation more efficient
[Beaujean et al., 2021]. It is unclear how this affects expressiveness, as we loose permutation-
invariance. Going beyond expressiveness results, our goal is to further study graph similarities
suitable for graph learning, such as the cut distance as proposed by Grohe [2020]. Finally, instead of
sampling patterns from a fixed distribution, a more promising variant is to adapt the sampling process
in a sample-dependent manner. One could, for example, draw new patterns until each graph in the
sample has a unique embedding (up to isomorphism) or at least until we can distinguish 1-WL classes.
Alternatively, we could pre-compute frequent or interesting patterns as proposed by Schulz et al.
[2018] and use them to adapt the distribution. Such approaches would use the power of randomisation
to select an appropriate graph embedding in a data-driven manner, instead of relying on a finite set of
fixed and pre-determined patterns like previous work [Barceló et al., 2021; Bouritsas et al., 2022].

References
Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.

László Babai. Graph isomorphism in quasipolynomial time. In STOC, 2016.

Pablo Barceló, Floris Geerts, Juan Reutter, and Maksimilian Ryschkov. Graph Neural Networks with
Local Graph Parameters. In NeurIPS, 2021.

Paul Beaujean, Florian Sikora, and Florian Yger. Graph homomorphism features: Why not sample?
In Graph Embedding and Mining (GEM) Workshop at ECMLPKDD, 2021.

Christian Borgs, Jennifer Chayes, László Lovász, Vera T Sós, Balázs Szegedy, and Katalin Veszter-
gombi. Graph limits and parameter testing. In STOC, 2006.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

Saverio Caminiti, Emanuele G Fusco, and Rossella Petreschi. Bijective linear time coding and
decoding for k-trees. Theory of Computing Systems, 46(2):284–300, 2010.

Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for counting
small subgraphs. In STOC, 2017.

Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász meets Weisfeiler and Leman. In ICALP,
2018.

Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and Keyulu
Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. NeurIPS,
2019.

Zdeněk Dvořák. On recognizing graphs by numbers of homomorphisms. J. Graph Theory, 64(4):
330–342, 2010.

Josep Díaz, Maria Serna, and Dimitrios M. Thilikos. Counting h-colorings of partial k-trees. Theoret-
ical Computer Science, 281(1):291–309, 2002. ISSN 0304-3975.

Thomas Gärtner, Peter A. Flach, and Stefan Wrobel. On graph kernels: Hardness results and efficient
alternatives. In COLT, 2003.

Martin Grohe. Word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of
structured data. In PODS, 2020.

NT Hoang and Takanori Maehara. Graph homomorphism convolution. In ICML, 2020.

Pascal Kühner. Graph embeddings based on homomorphism counts. Master’s thesis, RWTH Aachen,
2021.

5

László Lovász. Operations with structures. Acta Mathematica Hungaria, 18:321–328, 1967.

László Lovász. Large Networks and Graph Limits, volume 60 of Colloquium Publications. 2012.

Dániel Marx and Michal Pilipczuk. Everything you always wanted to know about the parameterized
complexity of subgraph isomorphism (but were afraid to ask). In International Symposium on
Theoretical Aspects of Computer Science, 2014.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and Leman go neural: Higher-order graph neural networks.
In AAAI, 2019.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL
www.graphlearning.io.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling
for graph representations. In ICML, 2019.

Siqi Nie, Cassio P de Campos, and Qiang Ji. Learning bounded tree-width Bayesian networks via
sampling. In European Conference on Symbolic and Quantitative Approaches to Reasoning and
Uncertainty, 2015.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In NIPS, 2007.

Till Hendrik Schulz, Tamás Horváth, Pascal Welke, and Stefan Wrobel. Mining tree patterns with
partially injective homomorphisms. In ECMLPKDD, 2018.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In AISTATS, 2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

Pascal Welke, Tamás Horváth, and Stefan Wrobel. Probabilistic frequent subtree kernels. In
International Workshop on New Frontiers in Mining Complex Patterns at ECMLPKDD, 2015.

Lingfei Wu, Ian En-Hsu Yen, Zhen Zhang, Kun Xu, Liang Zhao, Xi Peng, Yinglong Xia, and Charu
Aggarwal. Scalable global alignment graph kernel using random features: From node embedding
to graph embedding. In KDD, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

Jaemin Yoo, U Kang, Mauro Scanagatta, Giorgio Corani, and Marco Zaffalon. Sampling subgraphs
with guaranteed treewidth for accurate and efficient graphical inference. In WSDM, 2020.

6

www.graphlearning.io

Table 2: Preliminary runtime results in seconds of the embedding computation.

method MUTAG IMDB-BIN IMDB-MULTI PAULUS25 CSL

GHC-full(6) 0.18 ± 0.01 11.28 ± 0.24 11.19 ± 0.20 2.92 ± 0.049 0.75 ± 0.015
ours 43.21 ± 18.78 516.85 ± 301.37 429.08 ± 281.35 351.26 ± 877.90 262.10 ± 391.51

A Sampling Details
Given a pattern size N ∈ N, we first draw a treewidth upper bound k < N given from some
distribution. Then we want to sample any graph with treewidth at most k with a nonzero probability.
A natural strategy is to first sample a k-tree, which is a maximal graph with treewidth k, and then
take a random subgraph of it. Uniform sampling of k-trees is described by Nie et al. [2015] and
Caminiti et al. [2010]. Alternatively, the strategy of Yoo et al. [2020] is also possible. Note that
we only have to guarantee that each pattern has a nonzero probability of being sampled; it does not
have to be uniform. While guaranteed uniform sampling would be preferable, we resort to a simple
sampling scheme that is easy to implement. We achieve a nonzero probability for each pattern of at
most a given treewidth k by first constructing a random k-tree P through its tree decomposition, by
uniformly drawing a tree T on N − k vertices and choosing a root. We then create P as the (unique
up to isomorphism) k-tree that has T as tree decomposition. We then randomly remove edges from
that k-tree i.i.d. with fixed probability (currently set to 0.1). This ensures that each subgraph of P
will be created with nonzero probability.

B Implementation Details and Benchmark Datasets
Our source code is available on github6 and the datasets in the correct format can be downloaded
from a google drive7. We rely on the C++ code of Curticapean et al. [2017]8 to efficiently compute
homomorphism counts. While the code computes a tree decomposition itself we decided to simply
provide it with our tree decomposition of the k-tree which we compute anyway, to make the computa-
tion more efficient. Additionally, we use the cross-validation-based eveluation with SVM and MLP
of Hoang and Maehara [2020]9.

MUTAG, IMDB-BIN, and IMDB-MULTI are taken from TU datasets [Morris et al., 2020],
PAULUS25 is from Hoang and Maehara [2020]10, and CSL is from Murphy et al. [2019].

Table 2 shows preliminary runtime results. It reports the time taken for sampling 30 patterns and
computing homomorphism counts for all patterns and all graphs in each database, i.e. the time to
compute graph embeddings. We compare to the runtime of the combined GHC-full(6) = GHC-
cycle(6) + GHC-tree(6) embedding computation. GHC is much faster, as GHC-full(6) only computes
counts for a total of 18 tree and cycle patterns with up to six vertices. Our method allows for larger
and more complex patterns and we pay a corresponding runtime cost. All runtimes were obtained on
an AMD Ryzen 9 3900X 12-Core Processor with 64GB of RAM running Ubuntu 20.04. Note that
our implementation is single-threaded and not yet well optimized.

C Proofs
Theorem 5. Let D be a distribution on Gn with full support and G ∈ Gn. Then the graph embedding
φF (G) = hom(F,G)eF with F ∼ D and the corresponding kernel k are complete in expectation.

Proof. Let D and φF with F ∼ D as stated and G ∈ Gn. Then

g = EF [φF (G)] =
∑

F ′∈Gn

Pr (F = F ′) hom(F ′, G)eF ′ .

The vector g has the entries (g)F ′ = Pr (F = F ′) hom(F ′, G). Let G′ be a graph that is non-
isomorphic to G and let g′ = EF [φF (G

′)] accordingly. By Theorem 1 we know that hom(Gn, G) ̸=
6https://github.com/pwelke/homcount
7https://drive.google.com/file/d/1aBwlk-9qX0SBKDRFEkXstcsWVxfPn0z0
8https://github.com/ChristianLebeda/HomSub
9https://github.com/gear/graph-homomorphism-network

10originally from https://www.distanceregular.org/graphs/paulus25.html

7

https://github.com/pwelke/homcount
https://drive.google.com/file/d/1aBwlk-9qX0SBKDRFEkXstcsWVxfPn0z0
https://github.com/ChristianLebeda/HomSub
https://github.com/gear/graph-homomorphism-network
https://www.distanceregular.org/graphs/paulus25.html

hom(Gn, G
′). Thus, there is an F ′ such that hom(F ′, G) ̸= hom(F ′, G′). By definition of D we

have that Pr(F = F ′) > 0 and hence Pr(F = F ′) hom(F ′, G) ̸= Pr(F = F ′) hom(F ′, G′) which
implies g ̸= g′. That shows that EF [φF (·)] is complete and concludes the proof.

Lemma 6. kmin is a complete kernel on G∞.

Proof. Let G,H ∈ G∞. We have to show that

φ∞̃(G) = φ∞̃(H) ⇔ G ≃ H ,

where G ≃ H indicates that G and H are isomorphic. There are two cases:

|V (G)| = |V (H)|: Then, by Theorem 1 we have φN (G) = φn(H) iff G ≃ H for N =
min{|V (G)|, |V (H)|} = |V (G)| = |V (H)|.

|V (G)| ̸= |V (H)|: Let w.l.o.g. 0 < |V (G)| < |V (H)|. Let P be the graph on exactly one vertex.
Then hom(P,G) < hom(P,H), i.e., we can distinguish graphs on different numbers of vertices
using homomorphism counts. As min{|V (G)|, |V (H)|} ≥ 1, we have P ∈ G|V (G)| and hence
φ|V (G)|(G) ̸= φ|V (G)|(H). The other direction follows directly from the fact that homomorphism
counts are invariant under isomorphism.

Theorem 7. Let D be a distribution on G∞ with full support and G ∈ G∞. Then φF (G) =
hom|V (G)|(F,G)eF with F ∼ D and the corresponding kernel are complete in expectation.

Proof. We can apply the same arguments as before from Theorem 5 to show that the expected
embeddings of two graphs G,H with size n′ = min{|V (G)|, |V (H)|} are equal iff their Lovász
vector restricted to size n′ are equal. By Lemma 6 we know that the latter only can happen if the two
graphs are isomorphic.

Proposition 8. There exists no distribution D with full support on G∞ such that the expected runtime
of Eq. (1) becomes polynomial in |V (G)| for all G ∈ G∞.

Proof. Let D be such a distribution and let D′ be the marginal distribution on the treewidths of
the graphs given by pk = PrF∼D(tw(F) = k) > 0. Let G be a given input graph in the
sample with n = |V (G)|. Díaz et al. [2002] has shown that computing hom(F,G) takes time
O
(
|V (F)||V (G)|tw(F)+1

)
. Assume for the purpose of contradiction that we can guarantee an

expected polynomial runtime (ignoring the |V (F)| and constant factors for simplicity):

EF∼D[n
tw(F)+1] =

∞∑
k=1

pkn
k+1 ≤ Cnc

for some constants C, c ∈ N. Then for all k ≥ c, it must hold that pknk+1 ≤ Cnc, as all summands
are positive. However, for large enough n the left hand side is larger than the right hand side.
Contradiction.

Theorem 9. There exists a distribution D such that computing the expectation complete graph
embedding φX(G) takes polynomial time in |V (G)| in expectation for all G ∈ Gn.

Proof. Let G ∈ Gn. Draw a treewidth upper bound k from a Poisson distribution with parameter λ to
be determined later. Select a distribution Dn,k which has full support on all graphs with treewidth up
to k and size up to n, for example, the one described in Appendix A. Using the algorithm of [Díaz
et al., 2002] this gives, for some constant C ∈ N, an expected runtime of

Ek∼Poi(λ),F∼Dn,k

[
C|V (F)||V (G)|tw(F)+1

]
≤ Ek∼Poi(λ)

[
Cnk+2

]
=

∞∑
k=0

λke−λ

k!
Cnk+2 =

Cn2

eλ
eλn.

8

We need to bound the right hand side by some polynomial Dnd for some constants D, d ∈ N. By
rearranging terms we see that

λ ≤
ln D

C + (d− 2) lnn

n− 1
= O

(
log n

n

)
is sufficient.

D Matching the Expressiveness of k-WL in Expectation
We devise a graph embedding matching the expressiveness of the k-WL test in expecation.

Theorem 10. Let D be a distribution with full support on the set of graphs with treewidth up to k.
The resulting graph embedding φk-WL

F (·) with F ∼ D has the same expressiveness as the k-WL test
in expectation. Furthermore, there is a specific such distribution such that we can compute φk-WL

F (G)
in expected polynomial time O(|V (G)|k+1) for all G ∈ G∞.

Proof. Let Tk be the set of graphs with treewidth up to k and D be a distribution with full support on
Tk. Then by the same arguments as before in Theorem 5, the expected embeddings of two graphs G
and H are equal iff their Lovász vectors restricted to patterns in Tk are equal. By Dvořák [2010] and
Dell et al. [2018] the latter happens iff k-WL returns the same color histogram for both graphs. This
proves the first claim.

For the second claim note that the worst-case runtime for any pattern F ∈ Tk is
O
(
|V (F)||V (G)|k+1

)
by Díaz et al. [2002]. However, the equivalence between homomorphism

counts on Tk and k-WL requires to inspect also patterns F of all sizes, in particular, also larger
than the size n of the input graph. To remedy this, we can draw the pattern size m = |V (F)| from
some distribution with bounded expectation and full support on N. For example, the geometric
m ∼ Geom(p) with any constant parameter p ∈ (0, 1) and expectation E[m] = 1

1−p is sufficient. By
linearity of expectation then

EF∼D

[
|V (F)||V (G)|tw(F)+1

]
≤ EF∼D

[
|V (F)||V (G)|k+1

]
= EF∼D [|V (F)|] |V (G)|k+1

= O
(
|V (G)|k+1

)
.

Note that for the embedding φk-WL
F (·) Lemma 8 does not apply. In particular, the used distribution

guaranteeing polynomial expected runtime is independent of n and can be used for all G∞.

9

	1 Introduction
	2 Complete Graph Embeddings
	2.1 Expectation Complete Embeddings and Kernels on G
	2.2 Sampling multiple patterns

	3 Computing Embeddings in Expected Polynomial Time
	4 Related Work
	5 Experiments
	6 Conclusion
	A Sampling Details
	B Implementation Details and Benchmark Datasets
	C Proofs
	D Matching the Expressiveness of k-WL in Expectation

