Min-Hashing for Probabilistic Frequent Subtree Feature Spaces

Pascal Welke, Tamás Horváth, Stefan Wrobel

Graph Kernels

- Measure the similarity between graphs
- Enable us to learn models on graphs with generic learners
- e.g. support vector machines, kernel PCA, ...
- Expressive graph kernels suffer from their severe computational complexity
- Most are NP-hard to compute

A kernel behaves like a scalar product in some real vector space

Probabilistic Subtree Kernels [1]

- Don't even try to mine cyclic patterns
- Forget about being exact

Mining:

We can learn a representation of a graph dataset by mining the frequent connected subgraphs

...and represent (unseen) graphs

Jaccard Similarity and Min-Hashing [2] Jaccard Similarity (aka. Tanimoto Kernel) can be approximated using Min-Hashing

$$Jacc(A,B) = \frac{A \cap B}{A \cup B} = Prob_{h \in H}(h(A) = h(B))$$

+ gives quite good results

- computationally intractable

- mining cannot be done in output polynomial time
- computing the embedding is NP-hard

Can we speed things up both theoretically and practically?

+ saves space + kernel can be computed fast

- normally, we need to know embedding for Min-Hashing to work

Dataset	k	θ	$\mathit{size}(\mathcal{F})$	naive	MH32	MH64	MH128	MH256
MUTAG	5	10%	452	206.38	49.93	68.24	96.12	127.42
MUTAG	ю	10%	543	244.11	42.77	63.77	90.57	125.39
MUTAG	15	10%	562	254.86	45.39	65.96	94.87	133.91
MUTAG	20	10%	573	260.18	55.34	76.32	105.15	135.11
PTC	5	10%	1,430	321.04	70.07	102.62	121.12	156.12
PTC	5	1%	9,619	734.79	236.31	327.27	475.35	611.92
PTC	ю	10%	1,566	354.20	79.63	108.59	109.44	147.91
PTC	20	10%	1,712	376.65	17.60	25.81	31.49	39.62
DD	5	10%	8,111	3,547.22	260.47	486.09	846.09	1,374.76
DD	IO	10%	18,137	6,670.93	317.82	568.23	1,072.58	1,936.42
DD	20	10%	33,100	11,005.49	344.59	653.66	1,242.03	2,190.15
NCII	5	10%	1,819	431.19	89.12	137.75	185.22	221.21
NCII	5	1%	21,306	900.68	615.62	920.17	1,227.52	1,378.18
NCII	20	10%	2,44I	557.70	115.07	183.54	220.14	255.58
NCI109	5	10%	2,182	462.62	115.62	170.43	206.23	254.70
NCI109	5	1%	19,099	886.06	532.38	727.15	1057.18	1,348.27
NCI109	20	10%	2,907	598.36	110.42	175.76	226.07	284.92

	θ	Method	MUTAG	PTC	DD	NCII	NCI109
-	10%	MH32	87.84	58.97	77.58	77.36	77.48
	10%	MH64	87.73	58.68	79.9I	78.04	79.54
	10%	MH128	87.59	56.97	82.07	79.94	79.94
	10%	MH256	87.78	57.18	83.58	80.76	81.72
	10%	Jaccard	89.04	57.72	85.38	82.28	82.4I
	10%	PSK	84.22	54.17	84.67	79.09	78.05
	10%	FSG	87.34	56.76	82.20	81.66	81.55
-		HK	93.00	62.70	81.00	n/a	n/a

Table 2: AUC values for our method (MH) for sketch sizes K = 32,64,128,256, k = 5spanning trees per graph, and frequency threshold $\theta =$ 10% to obtain the feature set. "n/a" indicates that the autors of [3] did not provide results for the respective

Table I: Average number of subtree isomorphism test per graph for several datasets with varying number k of sampled spanning trees and frequency thresholds θ . The table reports $size(\mathcal{F})$ and the average number of subtree isomorphism tests evaluated by the naive method and by our algorithm for K = 32,64,128,256 (last four columns).

P. Welke, T. Horváth, and S. Wrobel. Probabilistic frequent subtree kernels. In NFMCP 2015, Springer LNCS 9607, pages 179–193, 2015. [2] A. Z. Broder. On the resemblance and containment of documents. In Compression and Complexity of Sequences 1997. Proceedings, pages 21–29. IEEE, 1997. [3] Q. Shi, J. Petterson, G. Dror, J. Langford, A. J. Smola, and S. V. N. Vishwanathan. Hash kernels for structured data. J. Mach. Learn. Res., 10:2615–2637, 2009.

