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Graph Kernels
Min-Hashing for Probabilistic Frequent Subtree Feature Spaces

• Measure the similarity between graphs
• Enable us to learn models on graphs with generic learners

– e.g. support vector machines, kernel PCA, etc.
• Expressive graph kernels usually suffer from severe computational
complexity

– most are NP-hard to compute
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Frequent Subgraph Mining
Min-Hashing for Probabilistic Frequent Subtree Feature Spaces

• We can learn a representation
from a graph dataset

– mine all frequent connected
subgraphs

– computationally intractable

• And use this as the embedding
function of our kernel

– every graph can be represented
as a binary vector

– computing the embedding is
NP-hard
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Probabilistic Subtree Mining
Min-Hashing for Probabilistic Frequent Subtree Feature Spaces

• We simplify our problem by mining only frequent subtrees
– thus far, mining and embedding are still intractable

• we reduce the graph to a set of some sampled spanning trees
– introduces one sided error
– if a tree is found, it is frequent
– some frequent trees might not be found
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Computing the Probabilistic Subtree Kernel Embedding
Min-Hashing for Probabilistic Frequent Subtree Feature Spaces

• We solved the mining part
• How do we embed (new) graphs into the corresponding feature
space?

• Given a graph,G, a parameter k, and a set of tree patterns F:

– Initialize an all-zero vector x of length |F|
– Sample k spanning trees of G
– For each T ∈ F

• If T is a subgraph of one of these spanning trees of G
• Then set the corresponding entry of x to one

– Return x

• Wait! Do we need to do this explicitly?
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Jaccard Similarity and Min-Hashing
Min-Hashing for Probabilistic Frequent Subtree Feature Spaces

• The Jaccard similarity can be approximated via Min-Hashing

Jacc(A,B) = A ∩ B
A ∪ B = Probh∈H(h(A) = h(B))

– Each h ∈ H corresponds to a permutation of the feature set F
– It returns the smallest element in the set w.r.t. the permutation
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Properties of Min-Hashing
Min-Hashing for Probabilistic Frequent Subtree Feature Spaces

• Advantages:
– saves space by using relatively small sketch vectors
– similarities can be computed fast once sketches are available
– is a kernel

• Open Questions:

– How can we compute the sketch vectors intelligently?
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Computing Min-Hash Sketches Fast
Min-Hashing for Probabilistic Frequent Subtree Feature Spaces

• If a subgraph of a pattern does not appear in a graph, then the
pattern itself cannot appear

⇔

• If a pattern appears in a graph, all its subgraphs must appear
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Computing Min-Hash Sketches Fast
Min-Hashing for Probabilistic Frequent Subtree Feature Spaces

• If a subgraph of a pattern does not appear in a graph, then the
pattern itself cannot appear

⇔

• If a pattern appears in a graph, all its subgraphs must appear

⇒ When computing the
embedding of a graph,
we do not need to test
all patterns for
subgraph isomorphism
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Implementation
Min-Hashing for Probabilistic Frequent Subtree Feature Spaces

Input: graph G, directed graph F = (F, E) representing a poset (F,4) and K permutations σ1, . . . , σK of F
Output: sketch(G)
init sketch := [⊥, . . . ,⊥]
init state(T) := 0 for all T ∈ F
for i = 1 to |F| do

for j = 1 to K do
if

∣∣∣σj∣∣∣ ≥ i ∧ sketch[j] = ⊥ then
if state[σj[i]] 6= 0 then

if state[σj[i]] = 1 then sketch[j] = σj[i]
else if σj[i] 4 G then

sketch[j] = σj[i]
for all T′ ∈ F (including T) that can reach T in F do

set state(T′) := 1
else

for all T′ ∈ F (including T) that are reachable from T in F do
set state(T′) := −1

return sketch
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Does it work?
Min-Hashing for Probabilistic Frequent Subtree Feature Spaces

Dataset k θ size(F) naive MH32 MH64 MH128 MH256
MUTAG 5 10% 452 206.38 49.93 68.24 96.12 127.42
MUTAG 10 10% 543 244.11 42.77 63.77 90.57 125.39
MUTAG 15 10% 562 254.86 45.39 65.96 94.87 133.91
MUTAG 20 10% 573 260.18 55.34 76.32 105.15 135.11
PTC 5 10% 1,430 321.04 70.07 102.62 121.12 156.12
PTC 5 1% 9,619 734.79 236.31 327.27 475.35 611.92
PTC 10 10% 1,566 354.20 79.63 108.59 109.44 147.91
PTC 20 10% 1,712 376.65 17.60 25.81 31.49 39.62
DD 5 10% 8,111 3,547.22 260.47 486.09 846.09 1,374.76
DD 10 10% 18,137 6,670.93 317.82 568.23 1,072.58 1,936.42
DD 20 10% 33,100 11,005.49 344.59 653.66 1,242.03 2,190.15
NCI1 5 10% 1,819 431.19 89.12 137.75 185.22 221.21
NCI1 5 1% 21,306 900.68 615.62 920.17 1,227.52 1,378.18
NCI1 20 10% 2,441 557.70 115.07 183.54 220.14 255.58
NCI109 5 10% 2,182 462.62 115.62 170.43 206.23 254.70
NCI109 5 1% 19,099 886.06 532.38 727.15 1057.18 1,348.27
NCI109 20 10% 2,907 598.36 110.42 175.76 226.07 284.92

Table: Average number of subtree isomorphism test per graph for several datasets with varying number k of sampled spanning
trees and frequency thresholds θ. The table reports size(F) and the average number of subtree isomorphism tests evaluated by the
naive method and by our algorithm for K =32,64,128,256 (last four columns).
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Active Molecule Retrieval on NCI-HIV
Min-Hashing for Probabilistic Frequent Subtree Feature Spaces

• On a highly imbalanced dataset, we want to retrieve examples of
the smaller class

• We are given a positive example as query
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Conclusion
Min-Hashing for Probabilistic Frequent Subtree Feature Spaces

• We presented an approximation of an approximation of a graph
kernel

• It’s tractable for arbitrary graphs
• It’s faster to compute than the approximation
• The computed sketched embeddings use much less memory than
the approximated embeddings

• Works well for some problems in chemoinformatics


