Min-Hashing for Probabilistic Frequent Subtree Feature Spaces
Pascal Welke, Tamdas Horvath, and Stefan Wrobel

LWDA 2016

un iversitétbonnl

Graph Kernels

Min-Hashing for Probabilistic Frequent Subtree Feature Sp

e Measure the similarity between graphs
e Enable us to learn models on graphs with generic learners
- e.g. support vector machines, kernel PCA, etc.

» Expressive graph kernels usually suffer from severe computational
complexity
- most are NP-hard to compute

VAN -

: i — ©
/ - "
Pascal Welke - LWDA 2016 2/12 universitatbonn

Frequent Subgraph Mining

Min-Hashing for Probabilistic

e We can learn a representation

from a graph dataset K)
- mine all frequent connected P 7 -1 | ! Y A
subgraphs p
- computationally intractable S

Pascal Welke - LWDA 2016 3/12 universitétbonnl

Frequent Subgraph Mining

Min-Hashing for Probabilistic Frequent Subtree Feature Spaces

e We can learn a representation
from a graph dataset

- mine all frequent connected P
subgraphs

- computationally intractable

P
Z:I AN
oL

e And use this as the embedding
function of our kernel

7
i
o 1
- every graph can be represented il
as a binary vector

- computing the embedding is
NP-hard

Y A

(N T . i s |

AN

Pascal Welke - LWDA 2016 3/12 universitétbonnl

Probabilistic Subtree Mining

Min-Hashing for Probabilist

e We simplify our problem by mining only frequent subtrees
- thus far, mining and embedding are still intractable
e we reduce the graph to a set of some sampled spanning trees

- introduces one sided error
- if a tree is found, it is frequent
- some frequent trees might not be found

o

N-'N N — cormresr—= ‘ "
Pascal Welke - LWDA 2016 ‘ . 4/12 universitatbonn

Computing the Probabilistic Subtree Kernel Embeddmg

Min-Hashing for Probabilistic

e We solved the mining part

e How do we embed (new) graphs into the corresponding feature
space?

Pascal Welke - LWDA 2016 5/12 universitétbonnl

Computing the Probabilistic Subtree Kernel Embedding

Min-Hashing for Probabilistic Frequent Subtree Feature Spaces

e We solved the mining part

e How do we embed (new) graphs into the corresponding feature
space?
e Given a graph,G, a parameter k, and a set of tree patterns F:

- Initialize an all-zero vector x of length |F|
- Sample k spanning trees of G
- ForeachT e F

e If T is a subgraph of one of these spanning trees of G
e Then set the corresponding entry of x to one

- Return x

Pascal Welke - LWDA 2016 5/12 universitétbonnl

Computing the Probabilistic Subtree Kernel Embedding

Min-Hashing for Probabilistic Frequent Subtree Feature Spaces

We solved the mining part

How do we embed (new) graphs into the corresponding feature
space?
Given a graph,G, a parameter k, and a set of tree patterns 7:

- Initialize an all-zero vector x of length |F|
- Sample k spanning trees of G
- ForeachT e F

e If T is a subgraph of one of these spanning trees of G
e Then set the corresponding entry of x to one

- Return x
Wait! Do we need to do this explicitly?

Pascal Welke - LWDA 2016 5/12 universitétbonnl

Computing the Probabilistic Subtree Kernel Embedding

Min-Hashing for Probabilistic Frequ Subtree Feature Spaces

We solved the mining part
How do we embed (new) graphs into the corresponding feature
space?

raph,G, a parameter k, and a set of tree pa
Initialize an o vector x of length |F|
Sample k spanning tr
Foreach T € F

Wait! Do we need to do this explicitly?

Pascal Welke - LWDA 2016 5/12 universitétbonnl

Jaccard Similarity and Min-Hashing

Min-Hashing for Probabilistic Frequent Subtree Feature ¢

e The Jaccard similarity can be approximated via Min-Hashing

ANnB

Jacc(A,B) = AUB

= Probpeq(h(A) = h(B))

- Each h € H corresponds to a permutation of the feature set 7
- It returns the smallest element in the set w.r.t. the permutation

A% c —»
‘1 AC B —=
fa 2] Lk C —
o 8caAa—=
f‘CA'E, *>

L‘CEAr <

Pascal Welke - LWDA 2016 6/12 universitétbonnl

Gl e I 7= T3

Properties of Min-Hashing

Min-Hashing for Prot stic nt Subtree Featur:

e Advantages:

- saves space by using relatively small sketch vectors
- similarities can be computed fast once sketches are available
- is a kernel

Pascal Welke - LWDA 2016 7112 universitétbonnl

Properties of Min-Hashing

Min-Hashing for Probabilistic

e Advantages:

- saves space by using relatively small sketch vectors
- similarities can be computed fast once sketches are available
- is a kernel

e Open Questions:
- How can we compute the sketch vectors intelligently?

Pascal Welke - LWDA 2016 7112 universitétbonnl

Computing Min-Hash Sketches Fast

Min-Hashing for Probabilistic

e If a subgraph of a pattern does not appear in a graph, then the
pattern itself cannot appear
&

e If a pattern appears in a graph, all its subgraphs must appear

Pascal Welke - LWDA 2016 8/12 universitétbonnl

Computing Min-Hash Sketches Fast

Min-Hashing for Probabilistic Frequent Subtree Feature

e If a subgraph of a pattern does not appear in a graph, then the
pattern itself cannot appear
&

e If a pattern appears in a graph, all its subgraphs must appear

f [AGEST TREE PATTERNS /
AN /
, / N\
y p - X
7 / N
f J \
4 P <)
\ /
\ & I

SIN6LETONS

Pascal Welke - LWDA 2016 8/12 universitétbonnl

Computing Min-Hash Sketches Fast

Min-Hashing for Probabilistic Frequent Subtree Feature Spaces

e If a subgraph of a pattern does not appear in a graph, then the
pattern itself cannot appear
&

e If a pattern appears in a graph, all its subgraphs must appear

7 LAGGEST TReE PATTERNS .
A // N = When computing the
7 IVARN embedding of a graph,
X 4 \ -) we do not need to test
\ / k S all patterns for

Vo \ subgraph isomorphism

Pascal Welke - LWDA 2016 8/12 universitétbonnl

Implementation

Input: graph G, directed graph F = (F, E) representing a poset (F, <) and K permutations o1, ..., og of 7
Output: sketch(G)
init sketch :=[L, ..., 1]

init state(T) := O forall T € F
fori=1to |F|do
forj=1toK do
if o] > i A sketchlj] = L then
if state[oy[i]] # O then
if state[o;[i]] = 1 then sketch[j] = o;[i]
else if oj[i] < G then
sketch[j] = o;[i]
for all T/ € F (including T) that can reach T in F do
set state(T’) := 1
else
for all T/ ¢ F (including T) that are reachable from T in F do
set state(T') == —1
return sketch

Pascal Welke - LWDA 2016 9/12 universitatbonn

Does it work?

Min-Hashing for Probabilistic F

Dataset k 0 size(F) naive MH32 MH64 MH128 MH256
MUTAG 5 10% 452 206.38 49.93 68.24 96.12 127.42
MUTAG 10 10% 543 24411 42.77 63.77 90.57 125.39
MUTAG 15 10% 562 254.86 45.39 65.96 94.87 133.91
MUTAG 20 10% 573 260.18 55.34 76.32 105.15 135.11
PTC 5 10% 1,430 321.04 70.07 102.62 121.12 156.12
PTC 5 1% 9,619 734.79 236.31 327.27 475.35 611.92
PTC 10 10% 1,566 354.20 79.63 108.59 109.44 147.91
PTC 20 10% 1,712 376.65 17.60 25.81 31.49 39.62
DD 5 10% 8,111 3,547.22 260.47 486.09 846.09 1,374.76
DD 10 10% 18,137 6,670.93 317.82 568.23 1,072.58 1,936.42
DD 20 10% 33,100 11,005.49 344.59 653.66 1,242.03 2,190.15
NCI1 5 10% 1,819 431.19 89.12 137.75 185.22 221.21
NCI1 5 1% 21,306 900.68 615.62 920.17 1,227.52 1,378.18
NCI1 20 10% 2,441 557.70 115.07 183.54 220.14 255.58
NCI109 5 10% 2,182 462.62 115.62 170.43 206.23 254.70
NCI109 5 1% 19,099 886.06 532.38 727.15 1057.18 1,348.27
NCI109 20 10% 2,907 598.36 110.42 175.76 226.07 284.92

Ta bIe: Average number of subtree isomorphism test per graph for several datasets with varying number k of sampled spanning
trees and frequency thresholds 6. The table reports size(F) and the average number of subtree isomorphism tests evaluated by the
naive method and by our algorithm for K =32,64,128,256 (last four columns).

Pascal Welke - LWDA 2016 10/12 universitatbonn

Active Molecule Retrieval on NCI-HIV

1-Hashing for Probabilistic

e On a highly imbalanced dataset, we want to retrieve examples of
the smaller class

e We are given a positive example as query

0.8
0.7
0.6}
I3 — path min-hash
205 — Exact Jaccard §=10% k=5
£ ol — MH64 0=10% k=5
:.} —— MH64 0=10% k=20
g 03 — MH64 0=0.5% k=5
< MH64 6=0.5% k=20
0.2

°
-

o
=)

o

20 20 60 80 100 '
Number of Neighbors i . g o
Pascal Welke - LWDA 2016 11/12 universitatbonn

Conclusion

Min-Hashing for Probabilistic Frequent Subtree Feature S

We presented an approximation of an approximation of a graph
kernel

It's tractable for arbitrary graphs
It's faster to compute than the approximation

The computed sketched embeddings use much less memory than
the approximated embeddings

Works well for some problems in chemoinformatics

Pascal Welke - LWDA 2016 12/12 universitétbonnl

