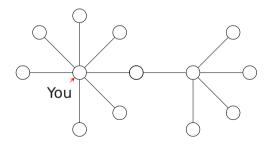
Three-Hop Distance Estimation in Social Graphs

Pascal Welke, Alexander Markowetz, Torsten Suel, Maria Christoforaki

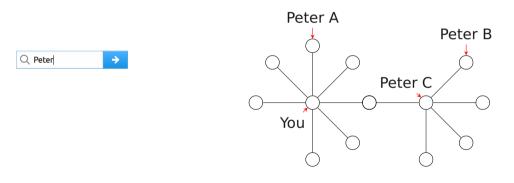
IEEE BigData 2016

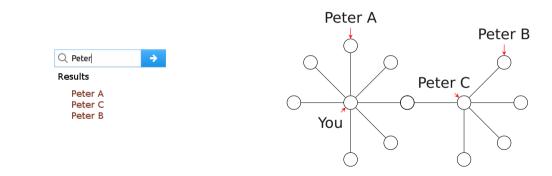
Three-Hop Distance Estimation in Social Graphs

Three-Hop Distance Estimation in Social Graphs



Three-Hop Distance Estimation in Social Graphs





Distance Estimation for Social Search

- Social graphs may have millions of vertices and billions of edges
 - Running a shortest path algorithm for each query at runtime is infeasible (runtime constraints)
 - Computing and storing all distances in advance is infeasible (space constraints)

Distance Estimation for Social Search

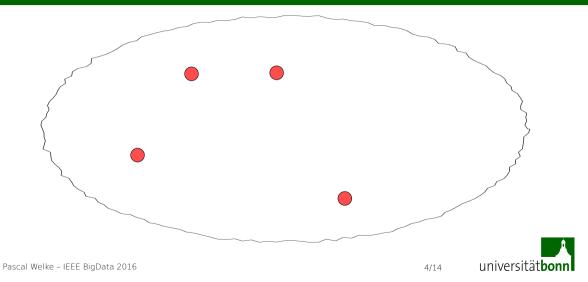
- Social graphs may have millions of vertices and billions of edges
 - Running a shortest path algorithm for each query at runtime is infeasible (runtime constraints)
 - Computing and storing all distances in advance is infeasible (space constraints)
- Distance signals are one factor among many others in social search
 - Exact distances are not always required

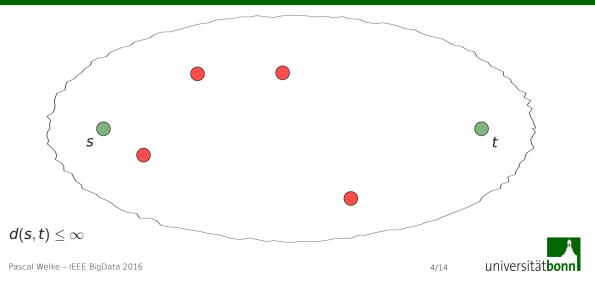
Distance Estimation for Social Search

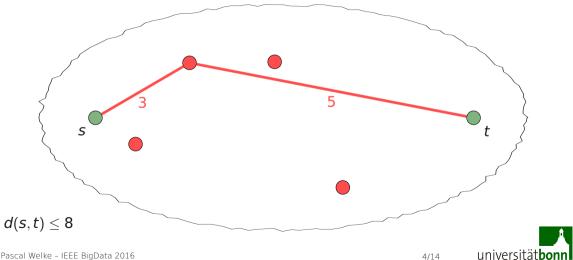
Three-Hop Distance Estimation in Social Graphs

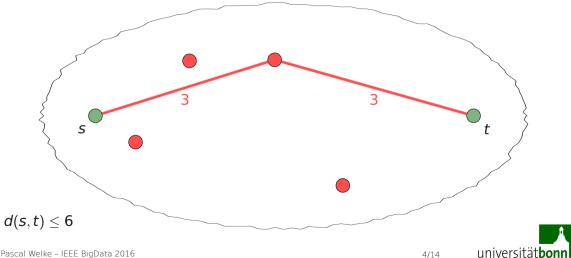
- Social graphs may have millions of vertices and billions of edges
 - Running a shortest path algorithm for each query at runtime is infeasible (runtime constraints)
 - Computing and storing all distances in advance is infeasible (space constraints)
- Distance signals are one factor among many others in social search
 - Exact distances are not always required

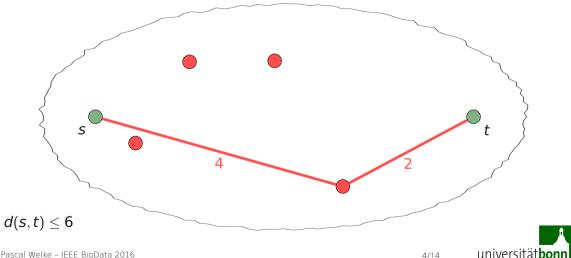
Problem: For a graph G = (V, E), compute a data structure of size O(|V| + |E|) that allows fast approximate answers to distance queries for arbitrary pairs of vertices $s, t \in V$.

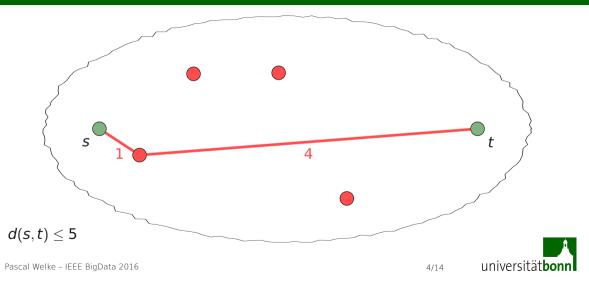








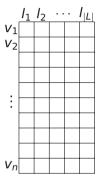




Problems with Two-Hop Landmarks

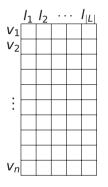
Three-Hop Distance Estimation in Social Graphs

 We have to store distances from all landmarks to all vertices



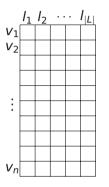
Problems with Two-Hop Landmarks

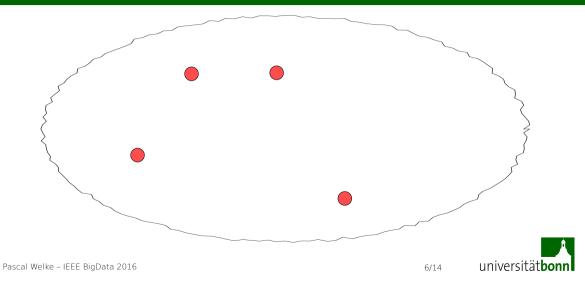
- We have to store distances from all landmarks to all vertices
- We need landmarks close to shortest paths for any given query

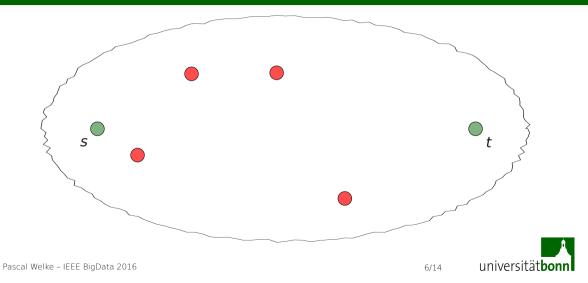


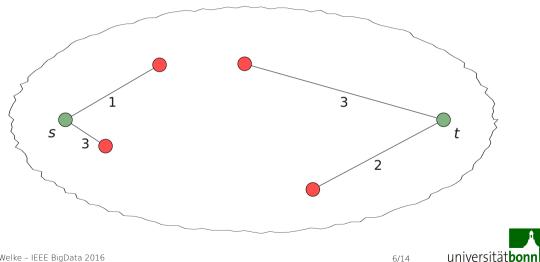
Problems with Two-Hop Landmarks

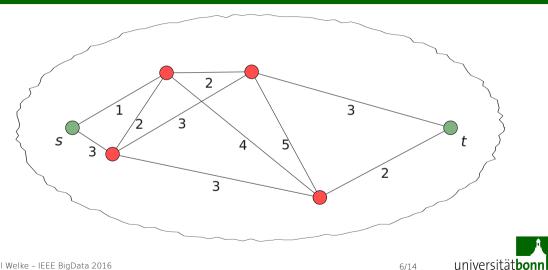
- We have to store distances from all landmarks to all vertices
- We need landmarks close to shortest paths for any given query
- The stored data needs to grow superlinearly for good results

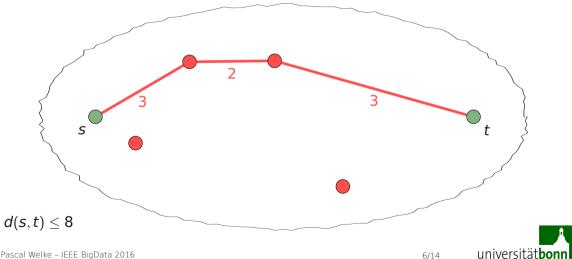






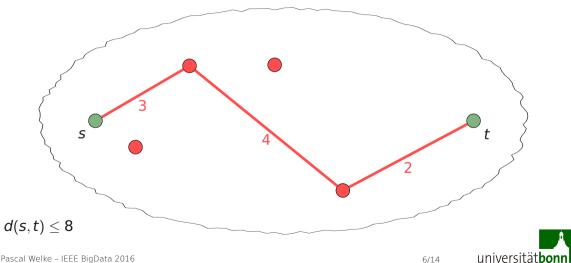


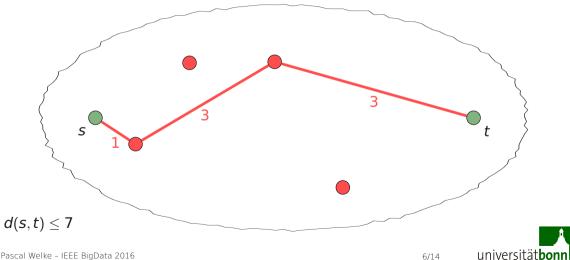


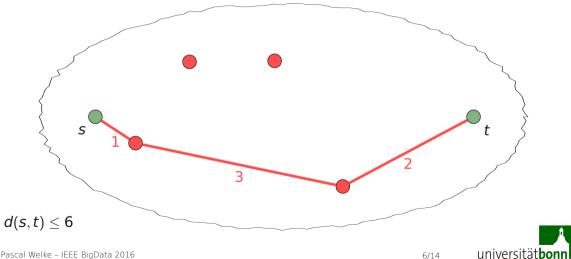


Pascal Welke - IEEE BigData 2016

6/14







Benefits & Drawbacks of Three-Hop Landmarks

Three-Hop Distance Estimation in Social Graphs

Pros:

- Close landmarks have a higher likelyhood to be close to shortest paths
- We can have up to $\sqrt{|V|}$ landmarks in a O(|V|) space data structure
- A small number of local landmarks suffices

Cons:

- Going over two landmarks gives less tight bounds
- Algorithms and data structures get more complicated

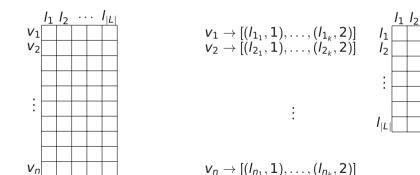
Which Approach is Better?

Three-Hop Distance Estimation in Social Graphs

. . .

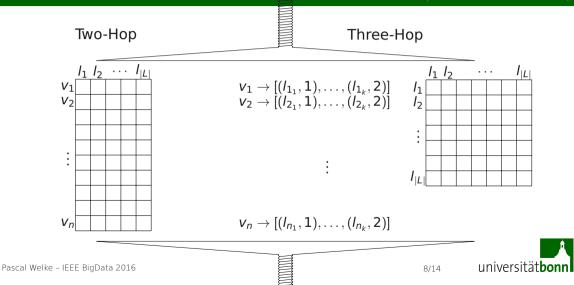
Two-Hop

Three-Hop



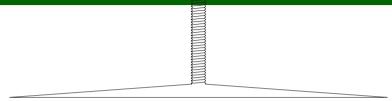
 $I_{|L|}$

Which Approach is Better?

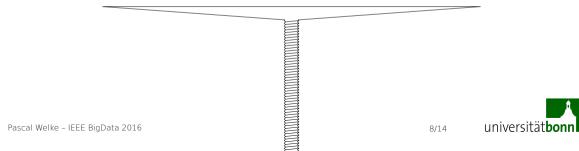


Which Approach is Better?

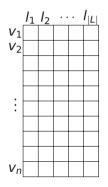
Three-Hop Distance Estimation in Social Graphs



Compressed Size vs. Estimation Error

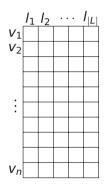


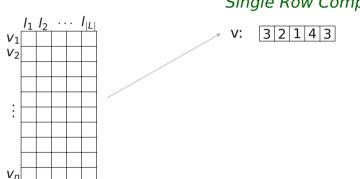
Three-Hop Distance Estimation in Social Graphs



Three-Hop Distance Estimation in Social Graphs

Single Row Compression



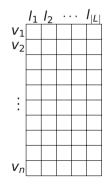


universität**bon**

Three-Hop Distance Estimation in Social Graphs

Single Row Compression

- Distances are small
- Use Rice coding

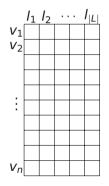


Three-Hop Distance Estimation in Social Graphs

Single Row Compression

- v: 3 2 1 4 3
- Distances are small
- Use Rice coding

Neighbor List Compression

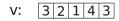


Three-Hop Distance Estimation in Social Graphs

Single Row Compression

- V: 3 2 1 4 3
- Distances are small
- Use Rice coding

Neighbor List Compression



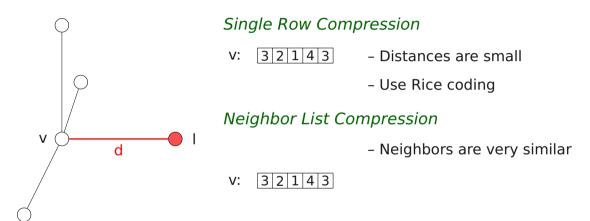
 $I_1 I_2 \cdots$

 V_1 V_2

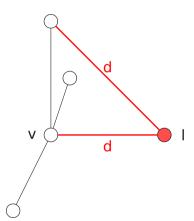
:

 V_n

 I_{11}



Three-Hop Distance Estimation in Social Graphs



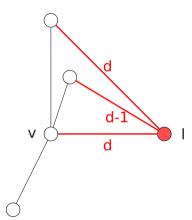
Single Row Compression

- v: 3 2 1 4 3
- Distances are small
- Use Rice coding

Neighbor List Compression

- Neighbors are very similar

Three-Hop Distance Estimation in Social Graphs



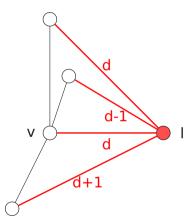
Single Row Compression

- V: 3 2 1 4 3
- Distances are small
- Use Rice coding

Neighbor List Compression

- Neighbors are very similar

Three-Hop Distance Estimation in Social Graphs



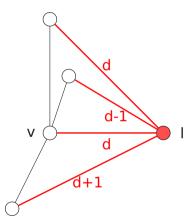
Single Row Compression

- V: 3 2 1 4 3
- Distances are small
- Use Rice coding

Neighbor List Compression

- Neighbors are very similar

Three-Hop Distance Estimation in Social Graphs



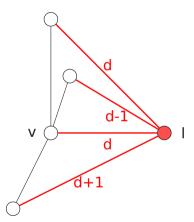
Single Row Compression

- v: 3 2 1 4 3
- Distances are small
- Use Rice coding

Neighbor List Compression

- w: 3 3 2 3 3
- Neighbors are very similar
- v: 3 2 1 4 3

Three-Hop Distance Estimation in Social Graphs



Single Row Compression

- V: 3 2 1 4 3
- Distances are small
- Use Rice coding

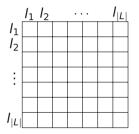
Neighbor List Compression

- w: 3 3 2 3 3
- v: 32143

0

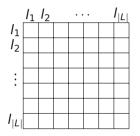
- Neighbors are very similar
- Use relative encoding
- less than two bits/distance

Three-Hop Distance Estimation in Social Graphs

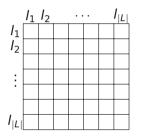


Three-Hop Distance Estimation in Social Graphs

Landmark-Landmark Distances



Three-Hop Distance Estimation in Social Graphs



Landmark-Landmark Distances

– Random access \Rightarrow fixed lenght encoding

Three-Hop Distance Estimation in Social Graphs

:

Landmark-Landmark Distances

– Random access \Rightarrow fixed lenght encoding

Single Row Compression

 $v_n \rightarrow [(I_{n_1},1),\ldots,(I_{n_k},2)]$

Three-Hop Distance Estimation in Social Graphs

 $v_1
ightarrow [(l_{1_1}, 1), \dots, (l_{1_k}, 2)] \ v_2
ightarrow [(l_{2_1}, 1), \dots, (l_{2_k}, 2)]$

i

Landmark-Landmark Distances

– Random access \Rightarrow fixed lenght encoding

Single Row Compression $v_1 \rightarrow [(10, 1), (2, 2), (11, 3)]$

 $v_n \rightarrow [(I_{n_1},1),\ldots,(I_{n_k},2)]$

Three-Hop Distance Estimation in Social Graphs

 $egin{aligned} v_1 &
ightarrow [(I_{1_1},1),\ldots,(I_{1_k},2)] \ v_2 &
ightarrow [(I_{2_1},1),\ldots,(I_{2_k},2)] \end{aligned}$

 $v_n \rightarrow [(I_{n_1},1),\ldots,(I_{n_k},2)]$

i

Landmark-Landmark Distances

– Random access \Rightarrow fixed lenght encoding

 $\begin{array}{ll} Single \; Row \; Compression \\ v_1 \to [(10,1),(2,2),(11,3)] & - \; \text{sort by id} \\ v_1 \to [(2,2),(10,1),(11,3)] \end{array}$

Three-Hop Distance Estimation in Social Graphs

 $v_n \rightarrow [(I_{n_1},1),\ldots,(I_{n_k},2)]$

;

Landmark-Landmark Distances

– Random access \Rightarrow fixed lenght encoding

Single Row Compression

- $v_1 \to [(10,1),(2,2),(11,3)] \qquad \text{- sort by id}$
- $v_1
 ightarrow [(2,2),(10,1),(11,3)]$ store gaps

 $v_1 \to [(2,2),(+8,1),(+1,3)]$

Three-Hop Distance Estimation in Social Graphs

 $egin{aligned} v_1 &
ightarrow [(I_{1_1},1),\ldots,(I_{1_k},2)] \ v_2 &
ightarrow [(I_{2_1},1),\ldots,(I_{2_k},2)] \end{aligned}$

 $v_n \rightarrow [(I_{n_1}, 1), \ldots, (I_{n_k}, 2)]$

;

Landmark-Landmark Distances

– Random access \Rightarrow fixed lenght encoding

Single Row Compression

- $v_1 \to [(10,1),(2,2),(11,3)] \qquad \text{- sort by id}$
- $v_1
 ightarrow [(2,2),(10,1),(11,3)]$ store gaps
- $v_1 \rightarrow [(2,2),(+8,1),(+1,3)] \qquad \text{- Rice coding}$

Three-Hop Distance Estimation in Social Graphs

 $v_1 \rightarrow [(l_{1_1}, 1), \dots, (l_{1_k}, 2)]$ $v_2 \rightarrow [(l_{2_1}, 1), \dots, (l_{2_k}, 2)]$

Neighbor List Compression

- Similarly, encode vertex information as diff to neighbor
- Take care of changing local landmarks

 $v_n \rightarrow [(I_{n_1},1),\ldots,(I_{n_k},2)]$

;

Experimental Evaluation

Three-Hop Distance Estimation in Social Graphs

• Evaluation on three Social Graphs

Experimental Evaluation

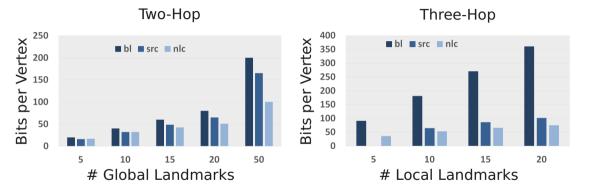
- Evaluation on three Social Graphs
- Here: loc-gowalla 197k vertices, 950k edges, diameter 16

Experimental Evaluation

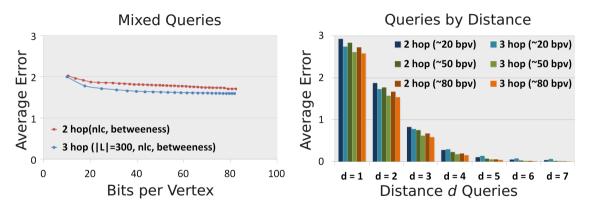
- Evaluation on three Social Graphs
- Here: loc-gowalla 197k vertices, 950k edges, diameter 16
- Lots of parameters:
 - How to select landmarks globally and locally?
 - How many local / global landmarks?
 - Which queries are interesting?

Compression Schemes

Three-Hop Distance Estimation in Social Graphs



Space vs. Average Error



Conclusion

Three-Hop Distance Estimation in Social Graphs

• Three-hop landmarks have an asymptotic advantage

Conclusion

- Three-hop landmarks have an asymptotic advantage
- They achieve a modest improvement over two-hop landmarks

Conclusion

- Three-hop landmarks have an asymptotic advantage
- They achieve a modest improvement over two-hop landmarks
- Sensible Compression makes a huge difference

