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Abstract

We describe some necessary conditions for the existence of a Hamiltonian path in any
graph (in other words, for a graph to be traceable). These conditions result in a linear
time algorithm to decide the Hamiltonian path problem for cactus graphs. We apply this
algorithm to several molecular databases to report the numbers of graphs that are traceable
cactus graphs.

1 Introduction

A Hamiltonian path is a path in a graph G that contains each vertex of G exactly once. The
Hamiltonian path problem (i.e., does there exist a Hamiltonian path in a given graph G?) is a
well studied NP-complete problem with various applications [5]. Several algorithms have been
proposed to find a Hamiltonian path in a graph, or to decide that none exists. For example, Held
and Karp [6] give a O(n2 · 2n) algorithm to compute a Hamiltonian path. Björklund [1] gives
a O(1.657n) time algorithm to count the number of Hamiltonian paths in a graph, which can
also be used to decide the Hamiltonian path problem. Due to the exponential time complexity
of those and other algorithms, it would be beneficial to derive simple, fast tests that can be run
in advance to decide at least in some cases if there exists a Hamiltonian path, or not.

Many authors concentrated on sufficient conditions for a graph to be traceable (i.e., that it
contains a Hamiltonian path). E.g. Dirac [4] gives a lower bound on the number of edges in a
graph that implies the existence of a Hamiltonian path. Also, there is a wide range of graph
classes, where we know that a Hamiltonian path exists, e.g. complete graphs, cycles, paths, or
graphs of the platonic solids.

We go a different way and consider situations which do not allow for a Hamiltonian path.
That is, we define easily verifiable properties of graphs that prove that a graph is not traceable.
To our knowledge, there is much less work in this direction, most notably by Chvátal [2], that
introduces weakly Hamiltonian graphs and derives necessary conditions for a graph to contain
a Hamiltonian cycle. However, the paper uses quite involved concepts and the verification of
the conditions for a given graph is not straightforward. Our conditions, on the other hand, can
be checked in linear time and are easy to understand. They are based on partitioning a graph
G into its biconnected components and deriving a tree structure from those objects. In short,
a Hamiltonian path in G can only exist if this tree structure is a path.

We start by considering trees and continue by defining a tree structure using the biconnected
components of an arbitrary graph to devise conditions in Lemmas 2.3 and 2.4. As a direct
application of our necessary conditions, we devise a linear time algorithm for cactus graphs in
Theorem 3.1. Finally, we give statistics of a molecular dataset that were obtained using our
conditions.
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2 Nice Necessary Conditions

From now on, we only consider connected graphs, as otherwise there cannot be a Hamiltonian
path. We start by considering the Hamiltonian Path problem for trees. It is easy to see, that
a tree T has a Hamiltonian Path if and only if T is a path. We use standard graph notation,
see Diestels book [3] for definitions.

Lemma 2.1. A tree T has a Hamiltonian path if and only if T is a path.

Proof. “⇐” is clear. “⇒” Let T be a tree and P a Hamiltonian path in T . P contains all
vertices of T and has thus |V (G)|− 1 edges. Therefore, E(T ) = E(P ) and thus T is a path.

We will show that a generalized version of this holds for a tree structure defined on the
articulation vertices of any graph G. We need the following definition:

Definition 2.2. Let G be a connected graph. A vertex v ∈ V (G) is called articulation vertex if

its removal disconnects G, i.e., the graph G− v = (V ′, E′) is disconnected, where V ′ := V \ {v}
and E′ := {e ∈ E : v /∈ e}. The criticality of v is the number of connected components of

G− v.

In a tree, every vertex that is not a leaf is an articulation vertex. We now prove the first
necessary condition. In the case of trees, it follows directly from Lemma 2.1.

Lemma 2.3. Let G be a traceable graph. Then all vertices have criticality at most 2.

Proof. Suppose there is a vertex v with criticality at least 3. Then G− v has three nonempty
connected components C1, C2, C3. Let P be a Hamiltonian path of G and u1 (resp. u2, u3) be
the first vertex in V (C1) (resp. V (C2), V (C3)) occurring in P (w.l.o.g. in this order). Any path
connecting u1 ∈ V (C1) to u2 ∈ V (C2) in G needs to contain v. Otherwise, u and w would be
contained in the same connected component of G− v. The same is true for a path from u2 to
u3. Therefore, P contains v at least twice, which is a contradiction to P being a path.

Figure 1 shows an illustration of the situation described in Lemma 2.3. Vertex v2 has
criticality 3 and therefore does not allow for a Hamiltonian path in the graph. The next lemma
focuses on biconnected components.

Lemma 2.4. Let G be a traceable graph. Then each biconnected component of G contains at

most two articulation vertices.

Proof. Suppose there is a biconnected component B of G that contains three articulation ver-
tices v1, v2, v3. Removing vi ∈ {v1, v2, v3} from G results in a disconnected graph Gi := G− vi.
Now, there exists a connected component Bi in Gi such that V (Bi)∩ V (B) = V (B) \ {vi} and
Bi is connected. Let Xi be the nonempty graph of all other connected components of G − vi.
To see this, remember that B is a biconnected component thus removing a single vertex does
not disconnect B and all vertices in V (B)\{vi} are contained in the same connected component
of G− vi. However, as vi is an articulation vertex, G− vi is disconnected and thus V (Xi) 6= ∅.
As an example, Figure 1 shows Bi and Xi for the case vi = v1.

Claim: V (Xi) ∩ V (Xj) = ∅ for all i 6= j ∈ {1, 2, 3}.
Using this claim, we can prove the lemma. A Hamiltonian path P of G needs to contain all

vertices in V (X1), V (X2), V (X3). But to get from any vertex in V (Xi) to a vertex x ∈ V (Xj),
it needs to pass through vi. To get from vi to x, the path must pass through vj , as vi ∈ V (Bj).
Using the same argument as in the proof of Lemma 2.3, we see that P needs to visit one of the
articulation vertices v1, v2, v3 at least twice, which is a contradiction to P being a path.
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Figure 1: A cactus graph G without a Hamiltonian path. v2 has criticality 3 (Lemma 2.3) and
the biconnected component B contains three articulation vertices (Lemma 2.4).

Proof of Claim: Suppose there exists x ∈ V (Xi)∩V (Xj). As x ∈ V (Xi) there exists a path
in Xi connecting x to a neighbor of vi in G. Thus removing xj would not disconnect x from
vi ∈ V (Bj), which contradicts x ∈ V (Xj).

Lemma 2.3 and Lemma 2.4 together show that on any graph G, the existence of a Hamil-
tonian path implies a path-structure on the biconnected components of G. More exactly, let
A(G) be the set of articulation vertices of G and B be the set of biconnected components of
G. We define a new graph A(G) = (A(G), E′) where E′ = {{v, w} : ∃B ∈ B : v, w ∈ V (B)}.
Then A(G) is a path. Therefore, the Hamiltonian path problem reduces to checking if these
two conditions hold and if there is a Hamiltonian path in each biconnected component, that

• starts at the first articulation vertex and ends at the second articulation vertex (if there
are two)

• starts at the articulation vertex (if there is one)

• starts and ends at arbitrary vertices (if there is no articulation vertex in G).

We call biconnected components that contain exactly one articulation vertex leaf components

and finish this section with an easy corollary of the above considerations.

Corollary 2.5. Let G be a traceable graph. Then there are either zero or two leaf components.
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Figure 2: A cactus graph on the left and a graph that is not a cactus on the right.

3 The Hamiltonian Path Algorithm for Cactus Graphs

The results of Section 2 imply a polynomial time algorithm for the Hamiltonian path problem
for cactus graphs. A cactus graph is a connected graph where every biconnected component is
either a single edge or a simple cycle. Figure 2 shows a cactus graph and a graph that is no
cactus.

Theorem 3.1. A cactus graph is traceable if and only if all of the following three conditions

hold:

• Each vertex has criticality at most two

• Each biconnected component contains at most two articulation vertices

• If a biconnected component contains two articulation vertices, they share an edge.

Proof. Each cycle is traceable, and each Hamiltonian path of a cycle C starts at an arbitrary
vertex of C and ends at one of its two neighbors. Edges are also traceable. “⇒” If a cactus
graph G is traceable then, by Lemmas 2.3 and 2.4 the first two conditions hold. Let B be
a biconnected component of G that contains two articulation vertices. If B is an edge, then
the third condition holds trivially. If B is a cycle, then any Hamiltonian path must enter B
through one articulation vertex v, leave it through the other w and can never enter B again.
Therefore, the path from v to w must be a Hamiltonian path of B and therefore contains all
edges in E(B) except one, which must be {v, w}. “⇐” We construct a Hamiltonian path as
follows: If G is biconnected (i.e., it has no articulation vertices), we construct a Hamiltonian
path by removing an arbitrary edge. Otherwise, for each cycle, we remove the edge between
the two articulation vertices or one of the edges incident to the unique articulation vertex in
the cycle. Note that by this, each articulation vertex has degree two in the resulting graph P .
As vertices with criticality 0 have degree one or two in G, every vertex in P has degree less
than three. We have removed exactly one edge from each cycle of G, thus P contains no cycles
and is still connected. Therefore, P is a path.

We can check the conditions of Theorem 3.1 in linear time for a graph G as follows: First,
we check if G is connected by a simple breadth first search in linear time. Next, we compute the
biconnected components of G in linear time using Tarjans algorithm [9]. Having the biconnected
components (given as lists of edges), it is easy to compute the criticality of each vertex in G by
counting the number of biconnected components each vertex occurs in as an endpoint of at least
one edge. Having the criticality of each vertex, we can compute the number of critical vertices
per biconnected components by a single pass over its edge list. To check if G is a cactus graph,
we test if each biconnected component is either an edge or a simple cycle, which can also be
done by a single pass over all edges in a biconnected component. If there are exactly two, by
another pass we can check if the component contains an edge that contains both critical vertices.
Therefore, the algorithm can be implemented to run in linear time with a small constant.
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4 Some Statistics for Molecular Datasets

We implemented some variants of the proposed algorithm and applied them to three well studied
molecular datasets.

NCI-HIV consists of almost 43k compounds that are annotated with their activity against the
human immunodeficiency virus (HIV) provided by the National Cancer institute [7]. We
do not consider the annotations here, but merely use the molecular graph representations.
The median number of vertices and edges per graph are 41 and 43, respectively. The
database consumes 20.1MB in our textual file format.

NCI-2012 is a larger set of molecular graphs from the same source [7]. It consists of more
than 250k graphs with median number of vertices and edges 36 and 37, respectively. The
file size is 100.3MB.

ZINC is a subset of almost 9 million so called ’Lead-Like’ molecules from the zinc database
of purchasable chemical compounds [8]. The molecules were selected to have molar mass
between 250g/mol and 350g/mol and have median number of vertices and edges 43 and
44, respectively. The file size is roughly 3.8GB.

Figure 1 shows the number of graphs N , the number of connected cactus graphs C, the
number of traceable cactus graphs T , as well as the number of (arbitrary) graphs X that are
definitively not traceable. Furthermore, it reports the time ti needed by our implementation
to compute value i ∈ {N,C, T,X}. The numbers were computed by parsing the database
from a text file and checking property i for each graph in the respective database. Times were
measured using the GNU time command summing up sys and user times.

All experiments were done on an Intel Core i7-2600K with 8GB main memory running
Ubuntu 14.04 64bit. The algorithms were implemented in C and compiled using gcc 4.8.2

with optimization flag -O3 enabled. No multi-threading was used. Furthermore, due to the fact
that each graph can be processed separately, the maximum memory consumption at any time
was less than 10MB.

tN reports the time our implementation needs to parse the graph database, create graph
objects in memory, and dump them again. As you can see, the actual tests only add a small
overhead in time compared to just parsing the data. On the other hand, by checking if a graph
(a) is connected and (b) fulfills our two necessary conditions, we can declare most of the graphs
from all databases as non traceable. For example, for the ZINC dataset, we would only need
to further investigate 7 out of almost 9 million graphs to check if they are traceable, or not.

5 Conclusion

We have proposed two necessary conditions for a graph to be traceable that are easy and fast
to check. Using them, we proposed a linear time algorithm that decides if a cactus graph is
traceable. In more general practical settings, checking these conditions could be a first step,
that might, in many cases make applying one of the exponential time exact algorithms obsolete.
We evaluated our tests effectiveness in that respect on three molecular data sets of varying size
and showed that most molecular graphs can be easily identified as non-traceable using our
conditions.

In future work, our proposed algorithm can be extended to yield an exact polynomial time
algorithm for more general classes of graphs. Using our conditions, we can reduce the Hamilto-
nian path problem in a non-biconnected graph G to smaller Hamiltonian path problems in the
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NCI-HIV NCI-2012 ZINC
N 42687 249533 8946757
C 18028 134478 6517109
X 42658 249436 8946750
T 6 80 0
tN 0.20 1.01 39.37
tC 0.28 1.47 56.50
tX 0.31 1.57 63.94
tT 0.32 1.67 70.31

Table 1: Statistics for three molecular data sets. The reported times are in seconds

biconnected components of G. We would only need to check if there is a Hamiltonian path in
each biconnected component that connects the two articulation vertices or starts at the unique
articulation vertex, respectively. This is possible in polynomial time if, for example, the number
of spanning trees in each biconnected component is bounded by a polynomial in the size of G.
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