Pascal Welke

DSAA 2020

Example: Co-authorship Networks

Example: Chemical Molecules

Efficient Frequent Subgraph Mining in Transactional Databases

Saccharose

(commons.wikimedia.org)

Pascal Welke - DSAA 2020

- Similarity based learning methods
 - "close by objects behave similarly"

- Similarity based learning methods
 - "close by objects behave similarly"
 - $\,\rightarrow$ What does "close by" mean if objects are graphs?

Efficient Frequent Subgraph Mining in Transactional Databases

- Similarity based learning methods
 - "close by objects behave similarly"
 - \rightarrow What does "close by" mean if objects are graphs?

Identification of relevant patterns

- Similarity based learning methods
 - "close by objects behave similarly"
 - $\,\rightarrow\,$ What does "close by" mean if objects are graphs?

- Identification of relevant patterns
 - What is a pattern?
 - What is relevant?

Efficient Frequent Subgraph Mining in Transactional Databases

 Let's say we have a few graphs (in a graph database D)

Efficient Frequent Subgraph Mining in Transactional Databases

- Let's say we have a few graphs (in a graph database D)
- *Frequent subgraphs* are a reasonable choice to define similarities in a domain of graphs

(Deshpande et al (2005))

Efficient Frequent Subgraph Mining in Transactional Databases

- Let's say we have a few graphs (in a graph database D)
- *Frequent subgraphs* are a reasonable choice to define similarities in a domain of graphs

(Deshpande et al (2005))

Frequent Connected Subgraph Mining (FCSM) Given a dataset of graphs $\mathcal{D} \subset \mathcal{G}$ and an

integer threshold $t \leq |\mathcal{D}|$

Efficient Frequent Subgraph Mining in Transactional Databases

- Let's say we have a few graphs (in a graph database D)
- *Frequent subgraphs* are a reasonable choice to define similarities in a domain of graphs

(Deshpande et al (2005))

Frequent Connected Subgraph Mining (FCSM)

Given a dataset of graphs $\mathcal{D} \subseteq \mathcal{G}$ and an integer threshold $t \leq |\mathcal{D}|$ List all connected graphs $P \in \mathcal{P}$ that are subgraph isomorphic to at least t graphs in \mathcal{D} .

Subgraph Isomorphism

Efficient Frequent Subgraph Mining in Transactional Databases

Definition

A subgraph isomorphism is an injective mapping

 $\varphi:V(G_1) \rightarrow V(G_2)$

such that

 $(v_1, v_2) \in E(G_1) \Rightarrow (\varphi(v_1), \varphi(v_2)) \in E(G_2)$

Subgraph Isomorphism

fficient Frequent Subgraph Mining in Transactional Databases

Definition

A subgraph isomorphism is an injective mapping

 $\varphi: V(G_1) \rightarrow V(G_2)$

such that

$$(v_1, v_2) \in E(G_1) \Rightarrow (\varphi(v_1), \varphi(v_2)) \in E(G_2)$$

Deciding whether one exists, is *NP-hard*.

Pascal Welke - DSAA 2020

Efficient Frequent Subgraph Mining in Transactional Databases

Frequent Subtree Mining

		FreeTreeMiner (Rückert and Kramer, 2004)		
FreeTre	eeMiner	HybridTreeMiner	F3TM	
(Chi et al.	, 2003)	(Chi et al, 2004)	(Zhao and Yu, 2008)	

Efficient Frequent Subgraph Mining in Transactional Databases

Frequent Subtree Mining

	FreeTreeMiner (Nicken and Krame, 2000)	
FreeTreeMiner	HybridTreeMiner (Di = 4, 200)	F3TM (ibse and Vo. 1000)

Efficient Frequent Subgraph Mining in Transactional Databases

Frequent Subtree Mining											
		FreeTreeMiner (Nicken and Youme, 2008)									
	FreeTreeMiner (On a st. 2000)	HybridTreeMiner (Di # 4), 2014) (Dist	M and Ye, 2000								2
Frequent Subgraph Mining											!
gSpan (Vas and Has, 2007)											
FSG (Visramushi and Kanjoli, 2001) (Bargels and Berchald, 20	FFSM (Haan et al, 2008)	Ganton (Nijaan and Kab, 2006)		- (Harvá	h and Flamon, 2010)]					
2001 2002	2003	2004	2008		2010	2011	2012	2013	2014	2018	2020

• All these methods enumerate the full set of frequent subtrees/subgraphs

Frequent Subtree Mining												
		FreeTreeMiner (Nielan and Krame, 2010)]									
	FreeTreeMiner (Coi m et. 2000)	Hybrid TreeMiner (Chi = el, 2014)	FSTM (Press and Ve; 2008)									2
Frequent Subgraph Mining												!
gSpan (Ven and Han, 2002)												
FSG (Fiscamuchi and Karypis, 2001) [Bargelt and Berchuld, 2007]	FFSM (Heas et al. 2008)	Gaston (Nijaan and Kak, 2004)]	(Pherei	th and Ramon, 2018)							
2001 2002	2003	2004	2008		2010	2011	2012	2013	:	2014	2018	2020

- All these methods enumerate the full set of frequent subtrees/subgraphs
- ...so why are we here, ten years later and discussing about this?

Efficient Frequent Subgraph Mining in Transactional Databases

• An acquaintance of yours has 200 graphs

- An acquaintance of yours has 200 graphs
 - 10-30 vertices each

- An acquaintance of yours has 200 graphs
 - 10-30 vertices each
 - 30-120 edges each

- An acquaintance of yours has 200 graphs
 - 10-30 vertices each
 - 30-120 edges each
 - 100+ (vertex) labels

- An acquaintance of yours has 200 graphs
 - 10-30 vertices each
 - 30-120 edges each
 - 100+ (vertex) labels
 - ...and wants to find frequent patterns with five or more vertices

- An acquaintance of yours has 200 graphs
 - 10-30 vertices each
 - 30-120 edges each
 - 100+ (vertex) labels
 - ...and wants to find frequent patterns with five or more vertices
- can he do it?

- An acquaintance of yours has 200 graphs
 - 10-30 vertices each
 - 30-120 edges each
 - 100+ (vertex) labels
 - ...and wants to find frequent patterns with five or more vertices
- can he do it?

Structure of this Talk

Efficient Frequent Subgraph Mining in Transactional Databases

1. Computational complexity of frequent subgraph/subtree mining

- what notions of efficiency are useful?
- is there any hope?

Structure of this Talk

Efficient Frequent Subgraph Mining in Transactional Databases

1. Computational complexity of frequent subgraph/subtree mining

- what notions of efficiency are useful?
- is there any hope?
- 2. Exact algorithms and their problems
 - a quick and general look at counting subgraph support

Structure of this Talk

- 1. Computational complexity of frequent subgraph/subtree mining
 - what notions of efficiency are useful?
 - is there any hope?
- 2. Exact algorithms and their problems
 - a quick and general look at counting subgraph support
- 3. Some more current *inexact* solutions
 - efficient for arbitrary graph databases
 - though *incomplete*, comparable predictive performance to exact frequent subgraphs

Part 1.

Computational Complexity of Frequent Subgraph Mining

Efficient Frequent Subgraph Mining in Transactional Databases

Frequent Connected Subgraph Mining (FCSM) Given a dataset of graphs $\mathcal{D} \subseteq \mathcal{G}$ and an integer threshold $t \leq |\mathcal{D}|$

Efficient Frequent Subgraph Mining in Transactional Databases

 $\begin{array}{l} \textit{Frequent Connected Subgraph Mining (FCSM)} \\ \textit{Given a dataset of graphs } \mathcal{D} \subseteq \mathcal{G} \textit{ and an} \\ \textit{integer threshold } t \leq |\mathcal{D}| \\ \textit{List all connected graphs } P \in \mathcal{P} \textit{ that} \\ \textit{are subgraph isomorphic to at} \\ \textit{least } t \textit{ graphs in } \mathcal{D}. \end{array}$

Efficient Frequent Subgraph Mining in Transactional Databases

 \mathcal{D}

 $\begin{array}{l} \textit{Frequent Connected Subgraph Mining (FCSM)} \\ \textit{Given a dataset of graphs } \mathcal{D} \subseteq \mathcal{G} \textit{ and an} \\ \textit{integer threshold } t \leq |\mathcal{D}| \\ \textit{List all connected graphs } P \in \mathcal{P} \textit{ that} \\ \textit{are subgraph isomorphic to at} \\ \textit{least } t \textit{ graphs in } \mathcal{D}. \end{array}$

).

Subgraph Isomorphism is NP-hard.

Frequent Connected Subgraph Mining (FCSM) Given a dataset of graphs $\mathcal{D} \subset \mathcal{G}$ and an integer threshold $t \leq |\mathcal{D}|$ List all connected graphs $P \in \mathcal{P}$ that are subgraph isomorphic to at least t graphs in \mathcal{D} .

 \mathcal{D}

Subgraph Isomorphism is *NP-hard*. (There is a bit more to it (Horváth et al (2007)))

2-frequent subgraphs of \mathcal{D} 0 8 8 4 0 UNIVERSITÄT BONN

11/19

- There can be exponentially many frequent patterns
 - we need a bound in the output size

- There can be exponentially many frequent patterns
 - $-\,$ we need a bound in the output size
- Output polynomial time
 - finish in polynomial time in *input size and output size*

- There can be exponentially many frequent patterns
 - $-\,$ we need a bound in the output size
- Output polynomial time
 - finish in polynomial time in *input size and output size*
- Polynomial delay
 - the time between finding two patterns is polynomial in the input size

- There can be exponentially many frequent patterns
 - we need a bound in the output size
- Output polynomial time
 - finish in polynomial time in *input size and output size*
- Polynomial delay
 - the time between finding two patterns is polynomial in the input size
- Incremental polynomial time
 - something in between

Efficient Frequent Subgraph Mining in Transactional Databases

- Software exists, e.g.
 - FSG (Kuramochi and Karypis (2001))
 - gSpan (Yan and Han (2002))
 - Gaston (Nijssen and Kok (2005)) ...

1

- Software exists, e.g.
 - FSG (Kuramochi and Karypis (2001))
 - gSpan (Yan and Han (2002))
 - Gaston (Nijssen and Kok (2005)
- However:

- Software exists, e.g.
 - FSG (Kuramochi and Karypis (2001))
 - gSpan (Yan and Han (2002))
 - Gaston (Nijssen and Kok (2005))
- However:
 - only works for (very simple, chemical) graphs

- Software exists, e.g.
 - FSG (Kuramochi and Karypis (2001))
 - gSpan (Yan and Han (2002))
 - Gaston (Nijssen and Kok (2005))
- However:
 - only works for (very simple, chemical) graphs
 - explodes on most other datasets

- Software exists, e.g.
 - FSG (Kuramochi and Karypis (2001))
 - gSpan (Yan and Han (2002))
 - Gaston (Nijssen and Kok (2005)) ...
- However:
 - only works for (very simple, chemical) graphs
 - *explodes* on most other datasets
- Computationally Intractable (Horváth et al (2007))

- Software exists, e.g.
 - FSG (Kuramochi and Karypis (2001))
 - gSpan (Yan and Han (2002))
 - Gaston Nijssen and Kok (2005) ...
- However:
 - only works for (very simple, chemical) graphs
 - explodes on most other datasets
- Computationally Intractable (Horváth et al (2007))
 - previous work deals with this using some properties of very simple graphs

fficient Frequent Subgraph Mining in Transactional Databases

- Software exists, e.g.
 - FSG (Kuramochi and Karypis (2001))
 - gSpan (Yan and Han (2002))
 - Gaston (Nijssen and Kok (2005))
- However:
 - only works for (very simple, chemical) graphs
 - explodes on most other datasets
- Computationally Intractable (Horváth et al (2007))
 - previous work deals with this using some properties of very simple graphs

50 ER random graphs, about 50 vertices each, t = 5

Welke (2019)

UNIVERSITÄT BONN

 \Rightarrow There is no system that can reliably mine all frequent subgraphs for arbitrary graph databases of small to medium sized graphs

13/19

Part 2.

Exact Frequent Subgraph Mining Algorithms (& Problems)

14/19

The Timeline, again...

Efficient Frequent Subgraph Mining in Transactional Databases

Frequent Subtree Mining

2

	FreeTreeMiner (Rückert and Kramer, 2004)		
FreeTreeMiner (Chi et al. 2003)	HybridTreeMiner (Chi et al. 2004)	F3TM (Zhao and Yu, 2008)	

The Timeline, again.

Frequent Subtree Mining

	FreeTreeMiner (Rickert and Kommer, 2004)	
FreeTreeMiner (Chi et al. 2003)	HybridTreeMiner F3TM (Chi et al. 2004) (Zheo and Yu, 2008)	

The Timeline, again.

Frequent Subtree Mining

	FreeTreeMiner (Rückert and Kramer, 2004)
only for forest transactions	only for forest transactions
FreeTreeMiner	HybridTreeMiner F3TM
(Chi et al, 2003)	(Chi et al, 2004) (Zhao and Yu, 2008)

Part 3. Efficient Inexact Mining Methods

Possible Ways Out

1. Make the database simpler or smaller (Chen et al (2009))

Possible Ways Out

- 1. Make the database simpler or smaller (Chen et al (2009)) (Welke et al (20
- 2. Change the embedding operator (Li and Wang (2015)) (Schulz et al (2018))

Possible Ways Out

Efficient Frequent Subgraph Mining in Transactional Databases

- 1. Make the database simpler or smaller (2009) Welke e
- 2. Change the embedding operator (Li and Wang (2015)) (Schulz et al (2018))
- 3. Restrict the pattern language and allow one-sided error (Schulz et al (2018))

Welke et al (2019))

(Welke et al (2020))

<u>A More Recent Timeline</u>

Frequent Subtree Mining

3

- Frequent subgraph mining is an inherently difficult problem
 - not possible in output polynomial time

- Frequent subgraph mining is an inherently difficult problem
 - $-\,$ not possible in output polynomial time
- Exact methods exist for a long time, but they only work on simple graph databases
 - use *output exponential* time & space

- Frequent subgraph mining is an inherently difficult problem
 - not possible in output polynomial time
- Exact methods exist for a long time, but they only work on simple graph databases
 - use *output exponential* time & space
- Relaxations of the problem result in efficient algorithms
 - polynomial delay
 - restriction to tree patterns
 - one-sided error

- Frequent subgraph mining is an inherently difficult problem
 - not possible in output polynomial time
- Exact methods exist for a long time, but they only work on simple graph databases
 - use *output exponential* time & space
- · Relaxations of the problem result in efficient algorithms
 - polynomial delay
 - restriction to tree patterns
 - one-sided error
- Can we combine exact and approximate tools to achieve "one-size-fits-all" mining?

- Frequent subgraph mining is an inherently difficult problem
 - not possible in output polynomial time
- Exact methods exist for a long time, but they only work on simple graph databases
 - use *output exponential* time & space
- Relaxations of the problem result in efficient algorithms
 - polynomial delay
 - restriction to tree patterns
 - one-sided error
- Can we combine exact and approximate tools to achieve "one-size-fits-all" mining?
- Can we devise efficient methods for non-tree patterns?

References I

Efficient Frequent Subgraph Mining in Transactional Databases

- C Borgelt, M Berthold (2002) Mining molecular fragments: Finding relevant substructures of molecules. In: ICDM, doi: 10.1109/ICDM.2002.1183885
- C Chen, C Lin, M Fredrikson, M Christodorescu, X Yan, J Han (2009) Mining graph patterns efficiently via randomized summaries. PVLDB 2(1):742–753, URL http://www.vldb.org/pvldb/2/vldb09-80.pdf
- Y Chi, Y Yang, R Muntz (2003) Indexing and mining free trees. In: ICDM
- Y Chi, Y Yang, R Muntz (2004) HybridTreeMiner: an efficient algorithm for mining frequent rooted trees and free trees using canonical forms. In: SSDBM, doi: 10.1109/SSDM.2004.1311189
- M Deshpande, M Kuramochi, N Wale, G Karypis (2005) Frequent substructure-based approaches for classifying chemical compounds. TKDE 17(8):1036–1050, doi: 10.1109/tkde.2005.127
- T Horváth, J Ramon (2010) Efficient frequent connected subgraph mining in graphs of bounded tree-width. Theor Comp Sci 411(31-33):2784–2797, doi: 10.1016/j.tcs.2010.03.030
- T Horváth, B Bringmann, L De Raedt (2007) Frequent hypergraph mining. In: ILP, Springer, doi: 10.1007/978-3-540-73847-3 26
- J Huan, W Wang, J Prins (2003) Efficient mining of frequent subgraphs in the presence of isomorphism. In: ICDM, doi: 10.1109/ICDM.2003.1250974
- M Kuramochi, G Karypis (2001) Frequent subgraph discovery. In: ICDM, doi: 10.1109/ICDM.2001.989534
- R Li, W Wang (2015) REAFUM: representative approximate frequent subgraph mining. In: SDM, doi: 10.1137/1.9781611974010.85
- S Nijssen, J Kok (2004) A quickstart in frequent structure mining can make a difference. In: KDD, doi: 10.1145/1014052.1014134
- S Nijssen, J Kok (2005) The gaston tool for frequent subgraph mining. Electronic Notes in Theor Comp Sci 127(1):77–87, doi: 10.1016/j.entcs.2004.12.039
- U Rückert, S Kramer (2004) Frequent free tree discovery in graph data. In: SAC, doi: 10.1145/967900.968018

20/19

References II

- T Schulz, T Horváth, P Welke, S Wrobel (2018) Mining tree patterns with partially injective homomorphisms. In: ECMLPKDD, doi: 10.1007/978-3-030-10928-8\ 35
- C Tinnes (2020) Personal communication
- P Welke (2019) Efficient frequent subtree mining beyond forests. PhD thesis, University of Bonn
- P Welke, T Horváth, S Wrobel (2018) Probabilistic frequent subtrees for efficient graph classification and retrieval. Mach Learn 107(11):1847–1873, doi: 10.1007/s10994-017-5688-7
- P Welke, T Horváth, S Wrobel (2019) Probabilistic and exact frequent subtree mining in graphs beyond forests. Mach Learn 108(7):1137–1164, doi: 10.1007/s10994-019-05779-1
- Pascal Welke, Florian Seiffarth, Michael Kamp, Stefan Wrobel (2020) HOPS: Probabilistic subtree mining for small and large graphs. In: KDD, doi: 10.1145/3394486.3403180
- X Yan, J Han (2002) gSpan: Graph-based substructure pattern mining. In: ICDM, doi: 10.1109/icdm.2002.1184038
- P Zhao, J Yu (2008) Fast frequent free tree mining in graph databases. WWW 11(1):71-92, doi: 10.1007/s11280-007-0031-z
- Z Zou, J Li, H Gao, S Zhang (2010) Mining frequent subgraph patterns from uncertain graph data. TKDE 22(9):1203–1218, doi: 10.1109/tkde.2010.80

