Decision Snippet Features

Pascal Welke, Fouad Alkhoury, Christian Bauckhage, Stefan Wrobel

ICPR 2021

A Small Dataset

-

Decision Snippet Features

lockdown	rain	cold	sunny	drink outside
×	\bigcirc	*	×	(2)
×	×	×	\diamond	6
\otimes	×	×	×	(9)
×	\Leftrightarrow	×	×	(2)
×	×	×	×	6
\otimes	×	*	×	(9)
\otimes	×	桊	\diamond	(1)

Basically, I drink outside whenever there is no lockdown and it is not raining. We see only a random training subset, so an algorithm might come to a different conclusion.

Pascal Welke - ICPR 2021

Motivation

- Decision trees are great
 - interpretable by humans
 - fast to train and apply
 - tend to overfit
- Ensembles (i.e. *Random Forests*) reduce variance
 - larger model size
 - less interpretable (due to larger size)
- How can we retain the benefits of random forests and decision trees?
 - the trees in a random forest are not independent
 - arguably, common structures might result from the underlying learning problem

Let's learn from random forests to identify a relevant smaller trained random forest

Pascal Welke - ICPR 2021

A Random Forest on Our Dataset

Decision Snippet Features

• Let's train a random forest with 20 trees on this training data

Let's Look at these Trees

Technical Issues

- Substructures may be incomplete
 - We need to add leaves

- Substructures see different data
 - We cannot use the leaf labels

Decision Snippet Features Training Process

- 1. Train Random Forest on Data
- 2. Mine Decision Snippets
- 3. Transform Data to Decision Snippet Feature space
- 4. Train a linear classifier

Conclusion

Decision Snippet Features

- Decision Snippet Features are based on regularities in random forests
- They work well
 - Size reductions up to orders of magnitude
 - comparable predictive performance

